Hosting Capacity Evaluation Method for Power Distribution Networks Integrated with Electric Vehicles

软件部署 功率(物理) 计算机科学 操作员(生物学) 功率流 可靠性工程 边界(拓扑) 航程(航空) 数学优化 电力系统 汽车工程 工程类 数学 物理 数学分析 航空航天工程 抑制因子 操作系统 基因 化学 转录因子 量子力学 生物化学
作者
Wei Dai,Junping Wang,Hui Hwang Goh,Jianmin Zhao,Jiangyi Jian
出处
期刊:Journal of modern power systems and clean energy [Springer Nature]
卷期号:11 (4): 1564-1575 被引量:1
标识
DOI:10.35833/mpce.2022.000515
摘要

The large-scale deployment of electric vehicles (EVs) poses critical challenges to the secure and economic operation of power distribution networks (PDNs). Therefore, a method for evaluating the hosting capacity that enables a PDN to determine the EV chargeable area (EVCA) to satisfy the charging demand and ensure the secure operation is proposed in this paper. Specifically, the distribution system operator (DSO) serves as a public entity to manage the integration of EVs by determining the presence of the charging load in the EVCA. Hence, an EVCA optimization model is formulated on the basis of the coupling effect of the charging nodes to determine the range of the available charging power. In this model, nonlinear power flow equations and operational constraints are considered to maintain the solvability of the power flow of the PDN. Subsequently, a novel multipoint approximation technique is proposed to quickly search for the boundary points of the EVCA. In addition, the impact of the demand response (DR) mechanism on the hosting capacity is explored. The results show that the presence of the DR significantly enlarged the EVCA during peak hours, thus revealing the suitability of the DR mechanism as an important supplement to accommodate the EV charging load. The examined case studies demonstrate the effectiveness of the proposed model and show that the unmanaged allocation of the charging load impedes secure operation. Finally, the proposed method provides a reference for the allocation of the EV charging load and a reduction in the risk of line overloading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘林美发布了新的文献求助10
2秒前
zz完成签到,获得积分10
2秒前
susu完成签到,获得积分10
4秒前
香蕉觅云应助嘞是举仔采纳,获得10
4秒前
6秒前
木子木子吱吱完成签到,获得积分10
6秒前
susu发布了新的文献求助30
7秒前
蔡忠英发布了新的文献求助10
8秒前
迷路访云完成签到,获得积分10
8秒前
9秒前
10秒前
BetterH完成签到 ,获得积分10
10秒前
无花果应助wow采纳,获得10
10秒前
wanci应助7iy采纳,获得10
11秒前
loong发布了新的文献求助10
15秒前
深情安青应助白桦林泪采纳,获得10
15秒前
17秒前
米米米完成签到 ,获得积分10
19秒前
JX完成签到 ,获得积分10
20秒前
21秒前
21秒前
锅包肉完成签到 ,获得积分10
21秒前
华仔应助loong采纳,获得10
22秒前
wow发布了新的文献求助10
23秒前
包容的鞋垫完成签到,获得积分10
24秒前
bkagyin应助congenialboy采纳,获得10
24秒前
搜集达人应助刘林美采纳,获得10
25秒前
张瑞雪完成签到 ,获得积分10
25秒前
hanshu发布了新的文献求助10
26秒前
28秒前
wow完成签到,获得积分10
29秒前
30秒前
牢孙完成签到,获得积分10
33秒前
嘞是举仔发布了新的文献求助10
34秒前
蔡忠英完成签到,获得积分10
35秒前
酷波er应助风车采纳,获得10
35秒前
CipherSage应助壹介草莽采纳,获得10
38秒前
PSQ完成签到,获得积分10
39秒前
39秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176