亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

XGBoost odor prediction model: finding the structure-odor relationship of odorant molecules using the extreme gradient boosting algorithm

气味 人工智能 Boosting(机器学习) 模式识别(心理学) 算法 计算机科学 生物系统 化学 神经科学 生物
作者
Pankaj Tyagi,Anju Sharma,Rahul Semwal,Uma Shanker Tiwary,Pritish Kumar Varadwaj
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:42 (20): 10727-10738 被引量:8
标识
DOI:10.1080/07391102.2023.2258415
摘要

Determining the structure-odor relationship has always been a very challenging task. The main challenge in investigating the correlation between the molecular structure and its associated odor is the ambiguous and obscure nature of verbally defined odor descriptors, particularly when the odorant molecules are from different sources. With the recent developments in machine learning (ML) technology, ML and data analytic techniques are significantly being used for quantitative structure-activity relationship (QSAR) in the chemistry domain toward knowledge discovery where the traditional Edisonian methods have not been useful. The smell perception of odorant molecules is one of the aforementioned tasks, as olfaction is one of the least understood senses as compared to other senses. In this study, the XGBoost odor prediction model was generated to classify smells of odorant molecules from their SMILES strings. We first collected the dataset of 1278 odorant molecules with seven basic odor descriptors, and then 1875 physicochemical properties of odorant molecules were calculated. To obtain relevant physicochemical features, a feature reduction algorithm called PCA was also employed. The ML model developed in this study was able to predict all seven basic smells with high precision (>99%) and high sensitivity (>99%) when tested on an independent test dataset. The results of the proposed study were also compared with three recently conducted studies. The results indicate that the XGBoost-PCA model performed better than the other models for predicting common odor descriptors. The methodology and ML model developed in this study may be helpful in understanding the structure-odor relationship.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
汉堡包应助mmyhn采纳,获得10
32秒前
瓜瓜完成签到,获得积分10
49秒前
50秒前
mmyhn发布了新的文献求助10
56秒前
科研通AI5应助瓜瓜采纳,获得30
57秒前
打打应助Rin采纳,获得10
1分钟前
时尚的蜡烛完成签到,获得积分10
1分钟前
fansuerte应助科研通管家采纳,获得10
1分钟前
fansuerte应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
3分钟前
lisaltp完成签到,获得积分10
4分钟前
上官若男应助lisaltp采纳,获得10
4分钟前
4分钟前
4分钟前
Rin发布了新的文献求助10
4分钟前
天天快乐应助清风拂山岗采纳,获得10
4分钟前
北国雪未消完成签到 ,获得积分10
4分钟前
Rin完成签到,获得积分10
4分钟前
彭于晏应助时尚的蜡烛采纳,获得10
5分钟前
5分钟前
5分钟前
自律完成签到,获得积分10
5分钟前
5分钟前
情怀应助清风拂山岗采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
MchemG完成签到,获得积分0
5分钟前
6分钟前
6分钟前
无与伦比完成签到 ,获得积分10
6分钟前
端庄大白完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
科研通AI5应助希夷采纳,获得10
7分钟前
wanci应助清风拂山岗采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Jj7完成签到,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228143
关于积分的说明 9778564
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991