Deep reinforcement learning for multi-objective combinatorial optimization: A case study on multi-objective traveling salesman problem

计算机科学 旅行商问题 强化学习 数学优化 趋同(经济学) 启发式 组合优化 启发式 交叉熵法 水准点(测量) 二次分配问题 最优化问题 人工智能 算法 数学 经济增长 操作系统 经济 大地测量学 地理
作者
Shicheng Li,Feng Wang,Qi He,Xujie Wang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:83: 101398-101398 被引量:11
标识
DOI:10.1016/j.swevo.2023.101398
摘要

Multi-objective combinatorial optimization problems (MOCOPs) widely exist in real applications, and most of them are computationally difficult or NP-hard. How to solve MOCOPs efficiently has been a challenging issue. The heuristic algorithms have achieved good results on MOCOPs, while they require careful hand-crafted heuristics and iterative computing for the solutions. Recently, deep reinforcement learning (DRL) has been employed to solve combinatorial optimization problems, and many DRL-based algorithms have been proposed with promising results. However, it is difficult for these existing algorithms to obtain diverse solutions efficiently for MOCOPs. In this paper, we propose an algorithm named MOMDAM to solve MOCOPs. In MOMDAM, the attention model (AM) is used and can simply modify the encoder to facilitate the construction of solutions with any weight vector, as well as the multiple decoders (MD) are employed to obtain diverse policies to further improve the diversity and convergence of the solutions. Experimental results on the bi-objective traveling salesman problem show that, MOMDAM significantly outperforms some state-of-the-art algorithms in terms of solution quality and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助壮观的可以采纳,获得10
刚刚
我喜欢大学霸应助林林采纳,获得10
2秒前
dominate完成签到,获得积分10
3秒前
3秒前
钙离子发布了新的文献求助10
4秒前
kdb完成签到,获得积分20
5秒前
7秒前
伯赏笑白完成签到,获得积分10
7秒前
Yunis发布了新的文献求助10
7秒前
8秒前
9秒前
桐桐应助徐小采纳,获得30
9秒前
天天快乐应助aaaaa采纳,获得10
10秒前
ED应助kdb采纳,获得10
11秒前
11秒前
12秒前
12秒前
我嘞个豆应助摇光采纳,获得10
12秒前
orixero应助钙离子采纳,获得10
12秒前
Jacquielin发布了新的文献求助10
12秒前
13秒前
桃子发布了新的文献求助10
13秒前
fff发布了新的文献求助10
13秒前
憨憨完成签到,获得积分10
14秒前
Zu发布了新的文献求助10
15秒前
15秒前
lzx完成签到,获得积分10
17秒前
You发布了新的文献求助10
18秒前
19秒前
21秒前
斯文败类应助桃子采纳,获得10
21秒前
22秒前
爱吃香菜完成签到,获得积分10
22秒前
24秒前
24秒前
faye发布了新的文献求助10
24秒前
雪崩完成签到,获得积分20
24秒前
天边完成签到,获得积分10
24秒前
neko完成签到,获得积分10
25秒前
今后应助zjxu采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824