Super-strong biomimetic bulk bamboo-based composites by a neural network interfacial design strategy

竹子 材料科学 复合材料 极限抗拉强度 复合数
作者
Juan Hu,Jiahui Wu,Yuxiang Huang,Yan He,Jixing Lin,Yamei Zhang,Yahui Zhang,Yanglun Yu,Wenji Yu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:475: 146435-146435 被引量:23
标识
DOI:10.1016/j.cej.2023.146435
摘要

As a sustainable ecological material, bamboo has become a popular modern green building material because of its rich yield, lightweight, high strength and rich cultural heritage. However, due to the limitation of bamboo tube thickness, multiple thickness-direction laminations are usually required to achieve large-sized materials, which leads to a significant decrease in strength. Therefore, it is urgent to find a way produce high-strength bamboo engineering composites on a large scale. Herein, a neural network interface design strategy was proposed, and a mechanical dissociation and partial matrix removal pretreatment method was used to open the weak intercellular layer and bamboo cell wall layer to increase the resin permeation channels. This allowed the resin to form a multi-scale bonding interface between multiple dense bamboo layers, achieving the preparation of bulk bamboo-based composite with adjustable dimensions and properties. The neural network-like bonding interface could firmly fix the compressed bamboo cells and enhance the mechanical properties of the bamboo cell wall and intercellular layer of bamboo, resulting in a tensile strength of 853 MPa for the composite, which was nearly three times that of natural bamboo and significantly superior to many structural materials such as alloys and other bamboo-based composites. In addition, this material showed good mildew resistance, flame retardancy and dimensional stability. This large-size bamboo composites are easy to scale production, which can be used in fields such as wind turbine blades, building structures, and outdoor walkways in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助YC采纳,获得20
2秒前
2秒前
daguan完成签到,获得积分10
3秒前
3秒前
情怀应助robi采纳,获得10
3秒前
4秒前
4秒前
sally完成签到 ,获得积分10
4秒前
6秒前
Orange应助活泼飞鸟采纳,获得50
6秒前
7秒前
7秒前
一二发布了新的文献求助10
7秒前
mzy发布了新的文献求助10
11秒前
CodeCraft应助北雁采纳,获得10
11秒前
11秒前
12秒前
犹豫弘文发布了新的文献求助10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
robi发布了新的文献求助10
15秒前
tt11111完成签到 ,获得积分10
15秒前
19秒前
就月听雨完成签到,获得积分10
20秒前
活泼飞鸟发布了新的文献求助50
22秒前
23秒前
可爱的函函应助mzy采纳,获得10
23秒前
jayus完成签到,获得积分10
23秒前
北雁完成签到,获得积分10
23秒前
眼睛大的尔蝶完成签到,获得积分10
24秒前
温馨发布了新的文献求助10
26秒前
追寻的纸鹤完成签到 ,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825