Super-strong biomimetic bulk bamboo-based composites by a neural network interfacial design strategy

竹子 材料科学 复合材料 极限抗拉强度 复合数
作者
Juan Hu,Jieyu Wu,Yuxiang Huang,Yingqi He,Jianguo Lin,Yamei Zhang,Yahui Zhang,Yanglun Yu,Wenji Yu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:475: 146435-146435 被引量:69
标识
DOI:10.1016/j.cej.2023.146435
摘要

As a sustainable ecological material, bamboo has become a popular modern green building material because of its rich yield, lightweight, high strength and rich cultural heritage. However, due to the limitation of bamboo tube thickness, multiple thickness-direction laminations are usually required to achieve large-sized materials, which leads to a significant decrease in strength. Therefore, it is urgent to find a way produce high-strength bamboo engineering composites on a large scale. Herein, a neural network interface design strategy was proposed, and a mechanical dissociation and partial matrix removal pretreatment method was used to open the weak intercellular layer and bamboo cell wall layer to increase the resin permeation channels. This allowed the resin to form a multi-scale bonding interface between multiple dense bamboo layers, achieving the preparation of bulk bamboo-based composite with adjustable dimensions and properties. The neural network-like bonding interface could firmly fix the compressed bamboo cells and enhance the mechanical properties of the bamboo cell wall and intercellular layer of bamboo, resulting in a tensile strength of 853 MPa for the composite, which was nearly three times that of natural bamboo and significantly superior to many structural materials such as alloys and other bamboo-based composites. In addition, this material showed good mildew resistance, flame retardancy and dimensional stability. This large-size bamboo composites are easy to scale production, which can be used in fields such as wind turbine blades, building structures, and outdoor walkways in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoD完成签到 ,获得积分10
2秒前
ZHH完成签到 ,获得积分10
6秒前
彩色映雁完成签到 ,获得积分10
11秒前
沉静问芙完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
HHW完成签到 ,获得积分10
16秒前
17秒前
lamer完成签到,获得积分10
18秒前
18秒前
devilito完成签到,获得积分10
19秒前
xun发布了新的文献求助10
22秒前
优秀棒棒糖完成签到 ,获得积分10
24秒前
然来溪完成签到 ,获得积分10
25秒前
29秒前
qianci2009完成签到,获得积分0
30秒前
sadh2完成签到 ,获得积分10
30秒前
xun完成签到,获得积分20
30秒前
30秒前
33秒前
崔灿完成签到 ,获得积分10
33秒前
含蓄的魔镜完成签到 ,获得积分10
34秒前
hhh2018687完成签到,获得积分10
34秒前
36秒前
量子星尘发布了新的文献求助10
37秒前
luffy完成签到 ,获得积分10
38秒前
jjjjjj发布了新的文献求助30
38秒前
federish完成签到 ,获得积分10
43秒前
健脊护柱完成签到 ,获得积分10
46秒前
蓝莓芝士完成签到 ,获得积分10
47秒前
Yuki完成签到 ,获得积分10
49秒前
grace完成签到 ,获得积分10
49秒前
Skyllne完成签到 ,获得积分10
50秒前
LONG完成签到 ,获得积分10
51秒前
LJ_2完成签到 ,获得积分10
52秒前
xue完成签到 ,获得积分10
53秒前
wangsiyuan发布了新的文献求助10
54秒前
jjjjjj完成签到,获得积分10
55秒前
嗡嗡嗡完成签到 ,获得积分10
56秒前
白华苍松发布了新的文献求助20
57秒前
观妙散人完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516426
求助须知:如何正确求助?哪些是违规求助? 4609379
关于积分的说明 14514873
捐赠科研通 4546050
什么是DOI,文献DOI怎么找? 2491063
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444767