Super-strong biomimetic bulk bamboo-based composites by a neural network interfacial design strategy

竹子 材料科学 复合材料 极限抗拉强度 复合数
作者
Juan Hu,Jieyu Wu,Yuxiang Huang,Yingqi He,Jianguo Lin,Yamei Zhang,Yahui Zhang,Yanglun Yu,Wenji Yu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:475: 146435-146435 被引量:56
标识
DOI:10.1016/j.cej.2023.146435
摘要

As a sustainable ecological material, bamboo has become a popular modern green building material because of its rich yield, lightweight, high strength and rich cultural heritage. However, due to the limitation of bamboo tube thickness, multiple thickness-direction laminations are usually required to achieve large-sized materials, which leads to a significant decrease in strength. Therefore, it is urgent to find a way produce high-strength bamboo engineering composites on a large scale. Herein, a neural network interface design strategy was proposed, and a mechanical dissociation and partial matrix removal pretreatment method was used to open the weak intercellular layer and bamboo cell wall layer to increase the resin permeation channels. This allowed the resin to form a multi-scale bonding interface between multiple dense bamboo layers, achieving the preparation of bulk bamboo-based composite with adjustable dimensions and properties. The neural network-like bonding interface could firmly fix the compressed bamboo cells and enhance the mechanical properties of the bamboo cell wall and intercellular layer of bamboo, resulting in a tensile strength of 853 MPa for the composite, which was nearly three times that of natural bamboo and significantly superior to many structural materials such as alloys and other bamboo-based composites. In addition, this material showed good mildew resistance, flame retardancy and dimensional stability. This large-size bamboo composites are easy to scale production, which can be used in fields such as wind turbine blades, building structures, and outdoor walkways in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
杨老师发布了新的文献求助10
1秒前
小巧的越泽完成签到,获得积分10
1秒前
1秒前
2秒前
Wwww发布了新的文献求助10
4秒前
4秒前
4秒前
Pan发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
zanie完成签到,获得积分10
5秒前
jasmine完成签到 ,获得积分10
6秒前
小苑完成签到,获得积分10
6秒前
鲸落发布了新的文献求助10
6秒前
机灵的醉山完成签到,获得积分10
6秒前
安静代萱完成签到 ,获得积分10
7秒前
7秒前
7秒前
清爽伯云应助卜钊采纳,获得10
8秒前
black发布了新的文献求助10
9秒前
无心的浩轩完成签到,获得积分10
9秒前
852应助zanie采纳,获得10
9秒前
海波完成签到,获得积分10
9秒前
科研小白发布了新的文献求助10
10秒前
充电宝应助小苑采纳,获得10
10秒前
qqwdss完成签到,获得积分10
11秒前
小北完成签到 ,获得积分10
11秒前
11秒前
慕青应助andrewliu采纳,获得30
11秒前
11秒前
LaLaC完成签到,获得积分10
12秒前
derrrrrsin完成签到,获得积分10
12秒前
12秒前
anubisi发布了新的文献求助10
12秒前
13秒前
润润完成签到 ,获得积分10
13秒前
安静的飞薇完成签到,获得积分10
13秒前
坦率的嫣娆完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917