Super-strong biomimetic bulk bamboo-based composites by a neural network interfacial design strategy

竹子 材料科学 复合材料 极限抗拉强度 复合数
作者
Juan Hu,Jieyu Wu,Yuxiang Huang,Yingqi He,Jianguo Lin,Yamei Zhang,Yahui Zhang,Yanglun Yu,Wenji Yu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:475: 146435-146435 被引量:45
标识
DOI:10.1016/j.cej.2023.146435
摘要

As a sustainable ecological material, bamboo has become a popular modern green building material because of its rich yield, lightweight, high strength and rich cultural heritage. However, due to the limitation of bamboo tube thickness, multiple thickness-direction laminations are usually required to achieve large-sized materials, which leads to a significant decrease in strength. Therefore, it is urgent to find a way produce high-strength bamboo engineering composites on a large scale. Herein, a neural network interface design strategy was proposed, and a mechanical dissociation and partial matrix removal pretreatment method was used to open the weak intercellular layer and bamboo cell wall layer to increase the resin permeation channels. This allowed the resin to form a multi-scale bonding interface between multiple dense bamboo layers, achieving the preparation of bulk bamboo-based composite with adjustable dimensions and properties. The neural network-like bonding interface could firmly fix the compressed bamboo cells and enhance the mechanical properties of the bamboo cell wall and intercellular layer of bamboo, resulting in a tensile strength of 853 MPa for the composite, which was nearly three times that of natural bamboo and significantly superior to many structural materials such as alloys and other bamboo-based composites. In addition, this material showed good mildew resistance, flame retardancy and dimensional stability. This large-size bamboo composites are easy to scale production, which can be used in fields such as wind turbine blades, building structures, and outdoor walkways in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
靓丽的熠彤完成签到,获得积分10
刚刚
伊戈达拉一个大拉完成签到 ,获得积分10
1秒前
小破网完成签到 ,获得积分0
2秒前
科研F5完成签到,获得积分10
2秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Gilana完成签到,获得积分10
4秒前
czcz完成签到,获得积分10
5秒前
二傻发布了新的文献求助10
5秒前
迷你的百川完成签到,获得积分10
6秒前
6秒前
6秒前
虚幻的凤完成签到,获得积分10
6秒前
fengyi2999完成签到,获得积分10
7秒前
小杨发布了新的文献求助10
7秒前
情怀应助LI电池采纳,获得10
7秒前
菜系完成签到,获得积分10
8秒前
陈淑玲完成签到,获得积分10
8秒前
8秒前
樊小胖完成签到,获得积分10
8秒前
Pothos完成签到,获得积分10
9秒前
月明完成签到,获得积分10
9秒前
9秒前
ning_qing完成签到 ,获得积分10
10秒前
Jasper应助ssaws采纳,获得10
10秒前
七怪完成签到,获得积分20
10秒前
jia完成签到,获得积分10
10秒前
10秒前
11秒前
小迪迦奥特曼完成签到,获得积分10
11秒前
11秒前
点点完成签到,获得积分10
12秒前
吹泡泡的红豆完成签到 ,获得积分10
12秒前
TCB完成签到,获得积分10
13秒前
好的发布了新的文献求助10
13秒前
无死何能生新颜完成签到,获得积分10
13秒前
七怪发布了新的文献求助10
13秒前
orixero应助南山无梅落采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259