溶剂变色
化学
光化学
斯托克斯位移
分子内力
互变异构体
荧光
氢键
激发态
溶剂
基态
部分
发色团
分子
立体化学
有机化学
物理
量子力学
核物理学
作者
Keenan T. Regan,Austin Pounder,Camille Lin,Leanne D. Chen,Richard A. Manderville
标识
DOI:10.1021/acs.jpca.3c04903
摘要
Aromatic chromophores possessing intramolecular hydrogen-bonds that can undergo excited-state intramolecular proton transfer (ESIPT) are critical tools for chemosensing/biosensing applications because they create large Stokes-shifted fluorescence with no overlap with the absorption spectrum to limit back-ground interferences. Classic ESIPT-active fluorophores, such as the 2-(2'-hydroxyphenyl) benzazole (HBX) series (X = NH, O, S), favor a ground-state (GS) enol (E) form that undergoes ESIPT to afford an excited-state (ES) keto (K) tautomer that generates red-shifted fluorescence. Herein, we have attached the HBX moiety to 6-methoxy-indanone (6MI) to create isomeric (ortho and para) ESIPT-active chalcone dyes and have characterized their photophysical properties in polar protic solvents (MeOH and glycerol (Gly)/MeOH mixtures) and a nonpolar aprotic (1,4-dioxane) solvent for comparison. The chalcones favor a GS E structure, which undergoes ESIPT in MeOH, Gly/MeOH mixtures, and dioxane to exclusively afford K emission with large Stokes shifts. The o-isomers possess expanded π-conjugation compared to their p-isomer counterparts, which diminishes their tendency to generate twisted intramolecular charge transfer (TICT) states. Consequently, the o-isomers have greater quantum yields and lack molecular rotor (MR) character with little K emission response to increased solvent viscosity. However, they possess strong positive solvatochromism, displaying significant blue wavelength shifts coupled with turn-on K emission in moving from polar protic MeOH to nonpolar dioxane. In contrast, the p-isomers display MR character with turn-on K emission in 75:25 Gly/MeOH compared to their emission in MeOH (up to 14-fold) due to a strong tendency for TICT. Mechanistic insight into the observed isomer-specific photophysical properties of the ESIPT-active chalcones was obtained through density functional theory (DFT) calculations. Implications for DNA biosensing applications are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI