Demographic Representation in 3 Leading Artificial Intelligence Text-to-Image Generators

医学 子专业 专业 人气 联想(心理学) 代表(政治) 人工智能 家庭医学 人口学 心理学 社会心理学 政治 计算机科学 社会学 政治学 法学 心理治疗师
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Hael Abdulrazeq,Fatima N. Mirza,Rachel Lim,Benjamin R. Johnston,Michael W. Groff,Theresa Williamson,Konstantina Svokos,Tiffany J. Libby,John H. Shin,Ziya L. Gokaslan,Curtis E. Doberstein,James Zou,Wael F. Asaad
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 87-87 被引量:21
标识
DOI:10.1001/jamasurg.2023.5695
摘要

Importance The progression of artificial intelligence (AI) text-to-image generators raises concerns of perpetuating societal biases, including profession-based stereotypes. Objective To gauge the demographic accuracy of surgeon representation by 3 prominent AI text-to-image models compared to real-world attending surgeons and trainees. Design, Setting, and Participants The study used a cross-sectional design, assessing the latest release of 3 leading publicly available AI text-to-image generators. Seven independent reviewers categorized AI-produced images. A total of 2400 images were analyzed, generated across 8 surgical specialties within each model. An additional 1200 images were evaluated based on geographic prompts for 3 countries. The study was conducted in May 2023. The 3 AI text-to-image generators were chosen due to their popularity at the time of this study. The measure of demographic characteristics was provided by the Association of American Medical Colleges subspecialty report, which references the American Medical Association master file for physician demographic characteristics across 50 states. Given changing demographic characteristics in trainees compared to attending surgeons, the decision was made to look into both groups separately. Race (non-White, defined as any race other than non-Hispanic White, and White) and gender (female and male) were assessed to evaluate known societal biases. Exposures Images were generated using a prompt template, “a photo of the face of a [blank]”, with the blank replaced by a surgical specialty. Geographic-based prompting was evaluated by specifying the most populous countries on 3 continents (the US, Nigeria, and China). Main Outcomes and Measures The study compared representation of female and non-White surgeons in each model with real demographic data using χ 2 , Fisher exact, and proportion tests. Results There was a significantly higher mean representation of female (35.8% vs 14.7%; P < .001) and non-White (37.4% vs 22.8%; P < .001) surgeons among trainees than attending surgeons. DALL-E 2 reflected attending surgeons’ true demographic data for female surgeons (15.9% vs 14.7%; P = .39) and non-White surgeons (22.6% vs 22.8%; P = .92) but underestimated trainees’ representation for both female (15.9% vs 35.8%; P < .001) and non-White (22.6% vs 37.4%; P < .001) surgeons. In contrast, Midjourney and Stable Diffusion had significantly lower representation of images of female (0% and 1.8%, respectively; P < .001) and non-White (0.5% and 0.6%, respectively; P < .001) surgeons than DALL-E 2 or true demographic data. Geographic-based prompting increased non-White surgeon representation but did not alter female representation for all models in prompts specifying Nigeria and China. Conclusion and Relevance In this study, 2 leading publicly available text-to-image generators amplified societal biases, depicting over 98% surgeons as White and male. While 1 of the models depicted comparable demographic characteristics to real attending surgeons, all 3 models underestimated trainee representation. The study suggests the need for guardrails and robust feedback systems to minimize AI text-to-image generators magnifying stereotypes in professions such as surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫马沛春完成签到,获得积分10
刚刚
学术老6完成签到,获得积分10
1秒前
任性半凡完成签到,获得积分10
1秒前
wmuzhao发布了新的文献求助10
2秒前
hao完成签到,获得积分10
3秒前
大吴克发布了新的文献求助10
3秒前
犇骉发布了新的文献求助10
3秒前
泡芙完成签到,获得积分10
3秒前
不想太多发布了新的文献求助10
4秒前
tommmmmm15完成签到,获得积分10
4秒前
SSDlk发布了新的文献求助10
4秒前
黄瓜橙橙发布了新的文献求助10
6秒前
gk完成签到,获得积分10
6秒前
凡而不庸完成签到,获得积分10
7秒前
危机的慕卉完成签到 ,获得积分10
8秒前
骑驴追火箭完成签到,获得积分10
8秒前
8秒前
多喝水我完成签到 ,获得积分10
10秒前
11秒前
俏皮的松鼠完成签到 ,获得积分10
11秒前
芋头读文献完成签到,获得积分10
12秒前
李健应助犹豫的若采纳,获得10
12秒前
ENIX完成签到 ,获得积分10
12秒前
曲艺发布了新的文献求助10
13秒前
tangyong完成签到,获得积分10
14秒前
文艺水风完成签到 ,获得积分0
14秒前
16秒前
徐伟康完成签到 ,获得积分10
16秒前
17秒前
宇宙的中心完成签到,获得积分10
18秒前
gaoxiaogao完成签到,获得积分10
18秒前
标致幻然完成签到 ,获得积分10
19秒前
爆米花应助曲艺采纳,获得10
21秒前
猴哥好样的完成签到,获得积分10
22秒前
fdpb完成签到,获得积分10
22秒前
Lyubb完成签到,获得积分10
22秒前
Will完成签到,获得积分10
22秒前
科研通AI2S应助Anker采纳,获得20
23秒前
mjc完成签到 ,获得积分10
23秒前
yx_cheng应助云枝采纳,获得30
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027