亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Demographic Representation in 3 Leading Artificial Intelligence Text-to-Image Generators

医学 子专业 专业 人气 联想(心理学) 代表(政治) 人工智能 家庭医学 人口学 心理学 社会心理学 政治 计算机科学 社会学 心理治疗师 法学 政治学
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Hael Abdulrazeq,Fatima N. Mirza,Rachel Lim,Benjamin R. Johnston,Michael W. Groff,Theresa Williamson,Konstantina Svokos,Tiffany J. Libby,John H. Shin,Ziya L. Gokaslan,Curtis E. Doberstein,James Zou,Wael F. Asaad
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 87-87 被引量:21
标识
DOI:10.1001/jamasurg.2023.5695
摘要

Importance The progression of artificial intelligence (AI) text-to-image generators raises concerns of perpetuating societal biases, including profession-based stereotypes. Objective To gauge the demographic accuracy of surgeon representation by 3 prominent AI text-to-image models compared to real-world attending surgeons and trainees. Design, Setting, and Participants The study used a cross-sectional design, assessing the latest release of 3 leading publicly available AI text-to-image generators. Seven independent reviewers categorized AI-produced images. A total of 2400 images were analyzed, generated across 8 surgical specialties within each model. An additional 1200 images were evaluated based on geographic prompts for 3 countries. The study was conducted in May 2023. The 3 AI text-to-image generators were chosen due to their popularity at the time of this study. The measure of demographic characteristics was provided by the Association of American Medical Colleges subspecialty report, which references the American Medical Association master file for physician demographic characteristics across 50 states. Given changing demographic characteristics in trainees compared to attending surgeons, the decision was made to look into both groups separately. Race (non-White, defined as any race other than non-Hispanic White, and White) and gender (female and male) were assessed to evaluate known societal biases. Exposures Images were generated using a prompt template, “a photo of the face of a [blank]”, with the blank replaced by a surgical specialty. Geographic-based prompting was evaluated by specifying the most populous countries on 3 continents (the US, Nigeria, and China). Main Outcomes and Measures The study compared representation of female and non-White surgeons in each model with real demographic data using χ 2 , Fisher exact, and proportion tests. Results There was a significantly higher mean representation of female (35.8% vs 14.7%; P < .001) and non-White (37.4% vs 22.8%; P < .001) surgeons among trainees than attending surgeons. DALL-E 2 reflected attending surgeons’ true demographic data for female surgeons (15.9% vs 14.7%; P = .39) and non-White surgeons (22.6% vs 22.8%; P = .92) but underestimated trainees’ representation for both female (15.9% vs 35.8%; P < .001) and non-White (22.6% vs 37.4%; P < .001) surgeons. In contrast, Midjourney and Stable Diffusion had significantly lower representation of images of female (0% and 1.8%, respectively; P < .001) and non-White (0.5% and 0.6%, respectively; P < .001) surgeons than DALL-E 2 or true demographic data. Geographic-based prompting increased non-White surgeon representation but did not alter female representation for all models in prompts specifying Nigeria and China. Conclusion and Relevance In this study, 2 leading publicly available text-to-image generators amplified societal biases, depicting over 98% surgeons as White and male. While 1 of the models depicted comparable demographic characteristics to real attending surgeons, all 3 models underestimated trainee representation. The study suggests the need for guardrails and robust feedback systems to minimize AI text-to-image generators magnifying stereotypes in professions such as surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
11秒前
11秒前
司空铭发布了新的文献求助10
14秒前
容若发布了新的文献求助10
15秒前
舒服的觅夏完成签到,获得积分10
24秒前
李健的小迷弟应助司空铭采纳,获得10
28秒前
33秒前
量子星尘发布了新的文献求助10
37秒前
39秒前
CodeCraft应助容若采纳,获得10
39秒前
sting发布了新的文献求助10
42秒前
46秒前
司空铭发布了新的文献求助10
51秒前
1分钟前
司空铭完成签到,获得积分20
1分钟前
容若发布了新的文献求助10
1分钟前
1分钟前
在水一方完成签到 ,获得积分0
1分钟前
Orange应助容若采纳,获得10
1分钟前
爆米花应助sunshine采纳,获得10
1分钟前
1分钟前
陈如馨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yusovegoistt发布了新的文献求助10
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
sunshine发布了新的文献求助10
1分钟前
陈如馨完成签到,获得积分10
1分钟前
1分钟前
容若发布了新的文献求助10
2分钟前
judy007发布了新的文献求助150
2分钟前
科目三应助活力的妙菡采纳,获得30
2分钟前
万能图书馆应助容若采纳,获得10
2分钟前
风华正茂完成签到,获得积分10
2分钟前
Zed发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611385
求助须知:如何正确求助?哪些是违规求助? 4016925
关于积分的说明 12435844
捐赠科研通 3698805
什么是DOI,文献DOI怎么找? 2039712
邀请新用户注册赠送积分活动 1072522
科研通“疑难数据库(出版商)”最低求助积分说明 956191