Demographic Representation in 3 Leading Artificial Intelligence Text-to-Image Generators

医学 子专业 专业 人气 联想(心理学) 代表(政治) 人工智能 家庭医学 人口学 心理学 社会心理学 政治 计算机科学 社会学 政治学 法学 心理治疗师
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Hael Abdulrazeq,Fatima N. Mirza,Rachel Lim,Benjamin R. Johnston,Michael W. Groff,Theresa Williamson,Konstantina Svokos,Tiffany J. Libby,John H. Shin,Ziya L. Gokaslan,Curtis E. Doberstein,James Zou,Wael F. Asaad
出处
期刊:JAMA Surgery [American Medical Association]
被引量:5
标识
DOI:10.1001/jamasurg.2023.5695
摘要

Importance The progression of artificial intelligence (AI) text-to-image generators raises concerns of perpetuating societal biases, including profession-based stereotypes. Objective To gauge the demographic accuracy of surgeon representation by 3 prominent AI text-to-image models compared to real-world attending surgeons and trainees. Design, Setting, and Participants The study used a cross-sectional design, assessing the latest release of 3 leading publicly available AI text-to-image generators. Seven independent reviewers categorized AI-produced images. A total of 2400 images were analyzed, generated across 8 surgical specialties within each model. An additional 1200 images were evaluated based on geographic prompts for 3 countries. The study was conducted in May 2023. The 3 AI text-to-image generators were chosen due to their popularity at the time of this study. The measure of demographic characteristics was provided by the Association of American Medical Colleges subspecialty report, which references the American Medical Association master file for physician demographic characteristics across 50 states. Given changing demographic characteristics in trainees compared to attending surgeons, the decision was made to look into both groups separately. Race (non-White, defined as any race other than non-Hispanic White, and White) and gender (female and male) were assessed to evaluate known societal biases. Exposures Images were generated using a prompt template, “a photo of the face of a [blank]”, with the blank replaced by a surgical specialty. Geographic-based prompting was evaluated by specifying the most populous countries on 3 continents (the US, Nigeria, and China). Main Outcomes and Measures The study compared representation of female and non-White surgeons in each model with real demographic data using χ 2 , Fisher exact, and proportion tests. Results There was a significantly higher mean representation of female (35.8% vs 14.7%; P < .001) and non-White (37.4% vs 22.8%; P < .001) surgeons among trainees than attending surgeons. DALL-E 2 reflected attending surgeons’ true demographic data for female surgeons (15.9% vs 14.7%; P = .39) and non-White surgeons (22.6% vs 22.8%; P = .92) but underestimated trainees’ representation for both female (15.9% vs 35.8%; P < .001) and non-White (22.6% vs 37.4%; P < .001) surgeons. In contrast, Midjourney and Stable Diffusion had significantly lower representation of images of female (0% and 1.8%, respectively; P < .001) and non-White (0.5% and 0.6%, respectively; P < .001) surgeons than DALL-E 2 or true demographic data. Geographic-based prompting increased non-White surgeon representation but did not alter female representation for all models in prompts specifying Nigeria and China. Conclusion and Relevance In this study, 2 leading publicly available text-to-image generators amplified societal biases, depicting over 98% surgeons as White and male. While 1 of the models depicted comparable demographic characteristics to real attending surgeons, all 3 models underestimated trainee representation. The study suggests the need for guardrails and robust feedback systems to minimize AI text-to-image generators magnifying stereotypes in professions such as surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的飞机完成签到,获得积分10
1秒前
1秒前
Yolo发布了新的文献求助10
2秒前
2秒前
坦率的匪应助磷酸果糖采纳,获得20
3秒前
4秒前
清风完成签到 ,获得积分10
5秒前
Jasper应助11采纳,获得10
6秒前
44发布了新的文献求助10
6秒前
曲聋五完成签到 ,获得积分10
6秒前
应谷槐发布了新的文献求助10
7秒前
7秒前
xuaotian完成签到,获得积分10
10秒前
11秒前
伶俐念珍发布了新的文献求助10
11秒前
上官若男应助不安易形采纳,获得10
11秒前
陈荣完成签到 ,获得积分10
11秒前
罗大大完成签到 ,获得积分10
12秒前
天天快乐应助menxiaomei采纳,获得10
12秒前
12秒前
小二郎应助重要无招采纳,获得10
12秒前
cc完成签到 ,获得积分10
13秒前
科研通AI2S应助satchzhao采纳,获得10
13秒前
pure完成签到 ,获得积分10
14秒前
hanhanhan完成签到 ,获得积分10
14秒前
磷酸果糖完成签到,获得积分10
15秒前
15秒前
认真点完成签到,获得积分10
15秒前
optical完成签到,获得积分10
16秒前
开心超人完成签到,获得积分10
16秒前
李天恩完成签到 ,获得积分10
17秒前
Luigi完成签到,获得积分20
18秒前
yaaabo完成签到,获得积分10
19秒前
King完成签到,获得积分10
19秒前
退役干饭王完成签到 ,获得积分20
20秒前
yu发布了新的文献求助10
20秒前
669完成签到,获得积分10
20秒前
烟花应助Kakaluote采纳,获得20
20秒前
啊唔完成签到 ,获得积分10
21秒前
飘逸的平松完成签到 ,获得积分10
21秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111770
求助须知:如何正确求助?哪些是违规求助? 2761913
关于积分的说明 7668343
捐赠科研通 2417016
什么是DOI,文献DOI怎么找? 1282949
科研通“疑难数据库(出版商)”最低求助积分说明 619220
版权声明 599512