作者
Longsheng Hong,Zongyi Sun,Danning Xu,Wanyan Li,Nan Cao,Xinliang Fu,Yunmao Huang,Yunbo Tian,Bingxin Li
摘要
Geese evolved from migratory birds, and when they consume excessive high-energy feed, glucose is converted into triglycerides. A large amount of triglyceride deposition can induce incomplete oxidation of fatty acids, leading to lipid accumulation in the liver and the subsequent formation of fatty liver. In the Chaoshan region of Guangdong, China, Shitou geese develop a unique form of fatty liver through 24 h overfeeding of brown rice. To investigate the mechanisms underlying the formation of fatty liver in Shitou geese, we collected liver samples from normally fed and overfed geese. The results showed that the liver size in the treatment group was significantly larger, weighing 3.5 times more than that in the control group. Extensive infiltration of lipid droplets was observed in the liver upon staining of tissue sections. Biochemical analysis revealed that compared to the control group, the treatment group showed significantly elevated levels of total cholesterol (T-CHO), triglycerides (TG), and glycogen in the liver. However, no significant differences were observed in the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which are common indicators of liver damage. Furthermore, we performed a combined transcriptomic and lipidomic analysis of the liver samples and identified 1510 differentially expressed genes (DEGs) and 1559 significantly differentially abundant metabolites (SDMs). The enrichment analysis of the DEGs revealed their enrichment in metabolic pathways, cellular process-related signaling pathways, and specific lipid metabolism pathways. We also conducted KEGG enrichment analysis of the SDMs and compared them with the enriched signaling pathways obtained from the DEGs. In this study, we identified three key signaling pathways involved in the formation of fatty liver in Shitou geese, namely, the biosynthesis of unsaturated fatty acids, glycerol lipid metabolism, and glycerophospholipid metabolism. In these pathways, genes such as glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), diacylglycerol O-acyltransferase 2 (DGAT2), lipase, endothelial (LIPG), lipoprotein lipase (LPL), phospholipase D family member 4 (PLD4) and phospholipase A2 group IVF (PLA2G4F) may regulate the synthesis of metabolites, including triacylglycerol (TG), phosphatidate (PA), 1,2-diglyceride (DG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). These genes and metabolites may play a predominant role in the development of fatty liver, ultimately promoting the accumulation of TG in the liver and leading to the progression of fatty liver.