有界函数
拉回吸引子
紧凑空间
拉回
索波列夫空间
嵌入
空格(标点符号)
吸引子
领域(数学分析)
数学
随机动力系统
纯数学
数学分析
语言学
计算机科学
线性动力系统
哲学
人工智能
线性系统
作者
Kush Kinra,Renhai Wang,Manil T. Mohan
出处
期刊:Evolution Equations and Control Theory
日期:2023-09-15
卷期号:13 (2): 349-381
被引量:2
摘要
This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \mathbb{L}^2(\mathcal{O}) $ and $ \mathbb{H}_0^1(\mathcal{O}) $, respectively. The compact embedding $ {\mathbb{H}}_0^1(\mathcal{O})\subset{\mathbb{L}}^2(\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\mathbb{L}}^2(\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \mathbb{H}_0^1(\mathcal{O}) $.
科研通智能强力驱动
Strongly Powered by AbleSci AI