有界函数
拉回吸引子
紧凑空间
拉回
索波列夫空间
嵌入
空格(标点符号)
吸引子
领域(数学分析)
数学
随机动力系统
纯数学
数学分析
线性动力系统
线性系统
语言学
哲学
人工智能
计算机科学
作者
Kush Kinra,Renhai Wang,Manil T. Mohan
摘要
This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \mathbb{L}^2(\mathcal{O}) $ and $ \mathbb{H}_0^1(\mathcal{O}) $, respectively. The compact embedding $ {\mathbb{H}}_0^1(\mathcal{O})\subset{\mathbb{L}}^2(\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\mathbb{L}}^2(\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \mathbb{H}_0^1(\mathcal{O}) $.
科研通智能强力驱动
Strongly Powered by AbleSci AI