Self-Paced Relational Contrastive Hashing for Large-Scale Image Retrieval

散列函数 计算机科学 图像检索 人工智能 比例(比率) 关系数据库 图像(数学) 模式识别(心理学) 自然语言处理 情报检索 程序设计语言 量子力学 物理
作者
Z.-M. Lu,Lu Jin,Zechao Li,Jinhui Tang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3392-3404 被引量:8
标识
DOI:10.1109/tmm.2023.3310333
摘要

Supervised deep hashing aims to learn hash functions using label information. Existing methods learn hash functions by employing either pairwise/triplet loss to explore the point-to-point relation or center loss to explore the point-to-class relation. However, these methods overlook the collaboration between the above two kinds of relations and the hardness of pairs. In this work, we propose a novel Self-Paced Relational Contrastive Hashing (SPRCH) method with a single learning objective to capture valuable discriminative information from hard pairs using both the point-to-point and point-to-class relations. To exploit the above two kinds of relations, the Relational Contrastive Hash (RCH) loss is proposed, which ensures that each data anchor is closer to all similar data points and corresponding class centers in the Hamming space compared to dissimilar ones. Moreover, the proposed RCH loss reduces the drastic imbalance between point-to-point pairs and point-to-class pairs by rebalancing their weights. To prioritize hard pairs, a self-paced learning schedule is proposed, assigning higher weights to these pairs in the RCH loss. The self-paced learning schedule assigns dynamic weights to pairs according to their similarities and the training process. In this way, deep hash model can initially learn universal patterns from the entire set of pairs and then gradually acquire more valuable discriminative information from hard pairs. Experimental results on four widely-used image retrieval datasets demonstrate that our proposed SPRCH method significantly outperforms the state-of-the-art supervised deep hash methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研小白采纳,获得10
刚刚
思源应助纯真的德地采纳,获得10
1秒前
爆米花应助xiaowang采纳,获得10
1秒前
支问凝完成签到,获得积分10
1秒前
深情傲柔发布了新的文献求助10
1秒前
2秒前
开朗安筠发布了新的文献求助10
2秒前
孤独的珩发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
深情安青应助fgjkl采纳,获得10
4秒前
安详世平发布了新的文献求助30
5秒前
Mss发布了新的文献求助10
5秒前
花玥鹿完成签到,获得积分10
5秒前
dannnnn发布了新的文献求助10
6秒前
xiaowang完成签到,获得积分10
7秒前
燚燚发布了新的文献求助10
8秒前
8秒前
颜好发布了新的文献求助10
9秒前
隐形曼青应助派大星采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
liyiying发布了新的文献求助10
10秒前
11秒前
张占发布了新的文献求助10
11秒前
研友_X894JZ完成签到 ,获得积分10
12秒前
大模型应助dannnnn采纳,获得10
12秒前
Jinna706完成签到,获得积分10
12秒前
12秒前
丁真爱上芙蓉王完成签到,获得积分20
13秒前
丘比特应助肥妹最励志采纳,获得10
13秒前
yyyrrr发布了新的文献求助10
13秒前
CipherSage应助脆皮小小酥采纳,获得10
14秒前
棋士发布了新的文献求助10
14秒前
隐形的邦布完成签到,获得积分10
15秒前
Amy完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609