Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
百分之五完成签到,获得积分10
1秒前
踏实孤容完成签到,获得积分10
1秒前
屿yu发布了新的文献求助30
1秒前
予秋发布了新的文献求助10
3秒前
3秒前
Rui发布了新的文献求助10
4秒前
mm关闭了mm文献求助
4秒前
zzz完成签到,获得积分10
4秒前
和璨完成签到,获得积分10
4秒前
5秒前
yuji完成签到 ,获得积分10
6秒前
7秒前
张诗言发布了新的文献求助10
7秒前
Liz1054发布了新的文献求助10
7秒前
cc完成签到,获得积分10
7秒前
Feliciti完成签到,获得积分20
7秒前
科研通AI6应助受戒采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
友好聋五完成签到,获得积分10
9秒前
科研通AI6应助摔跤的猫采纳,获得10
10秒前
10秒前
小小应助冷傲迎梦采纳,获得10
11秒前
LL完成签到,获得积分10
11秒前
11秒前
Docsiwen完成签到 ,获得积分10
11秒前
12秒前
桐桐应助dyy123采纳,获得10
12秒前
ssss发布了新的文献求助10
12秒前
SeliqAq完成签到 ,获得积分10
12秒前
12秒前
12秒前
小蓝莓发布了新的文献求助10
13秒前
Rui完成签到,获得积分10
13秒前
希望天下0贩的0应助qing采纳,获得10
15秒前
合适的平安完成签到,获得积分10
15秒前
龙1完成签到,获得积分10
15秒前
王成凤发布了新的文献求助10
15秒前
zzz发布了新的文献求助10
16秒前
baoxiaozhai完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513