亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盛夏如花发布了新的文献求助10
15秒前
Jessie完成签到 ,获得积分10
18秒前
42秒前
量子星尘发布了新的文献求助10
43秒前
桐桐应助土豆泥泥采纳,获得10
46秒前
cdragon发布了新的文献求助10
49秒前
Bin_Liu完成签到,获得积分20
1分钟前
土豆泥泥完成签到,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
关琦完成签到,获得积分10
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
在水一方应助cdragon采纳,获得10
1分钟前
CDEFGAB完成签到 ,获得积分10
1分钟前
1分钟前
coco发布了新的文献求助10
1分钟前
1分钟前
bai完成签到 ,获得积分10
1分钟前
科研通AI2S应助弋鱼采纳,获得10
1分钟前
123发布了新的文献求助10
1分钟前
hob完成签到,获得积分10
1分钟前
凡华完成签到,获得积分10
2分钟前
2分钟前
领导范儿应助hob采纳,获得10
2分钟前
咔咔发布了新的文献求助10
2分钟前
2分钟前
Viiigo完成签到,获得积分10
2分钟前
2分钟前
shaylie完成签到 ,获得积分10
2分钟前
肥肉叉烧发布了新的文献求助10
2分钟前
2分钟前
跳跃的滑板完成签到,获得积分10
2分钟前
yexu完成签到,获得积分10
2分钟前
6666发布了新的文献求助10
2分钟前
华仔应助跳跃的滑板采纳,获得10
2分钟前
FashionBoy应助ABC的风格采纳,获得10
2分钟前
肥肉叉烧完成签到,获得积分10
2分钟前
月半完成签到,获得积分10
2分钟前
光亮静槐完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657929
求助须知:如何正确求助?哪些是违规求助? 4814463
关于积分的说明 15080624
捐赠科研通 4816192
什么是DOI,文献DOI怎么找? 2577186
邀请新用户注册赠送积分活动 1532199
关于科研通互助平台的介绍 1490741