Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wlh完成签到 ,获得积分10
1秒前
Frank完成签到,获得积分10
1秒前
1秒前
2秒前
傲娇的凡发布了新的文献求助10
2秒前
zgdzhj完成签到,获得积分10
3秒前
3秒前
3秒前
Waris发布了新的文献求助10
4秒前
浮游应助晴子采纳,获得10
5秒前
浮游应助长度2到采纳,获得10
6秒前
小宇发布了新的文献求助10
6秒前
QIQI发布了新的文献求助10
7秒前
梦思遗落完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
zyx完成签到,获得积分10
8秒前
简7发布了新的文献求助30
8秒前
佐zzz发布了新的文献求助10
9秒前
lxl发布了新的文献求助10
10秒前
10秒前
上官若男应助ZY采纳,获得10
10秒前
11秒前
12秒前
热情的远锋完成签到 ,获得积分10
13秒前
13秒前
浮游应助晴子采纳,获得10
14秒前
量子星尘发布了新的文献求助10
16秒前
兰兰不懒发布了新的文献求助10
17秒前
Hello应助佐zzz采纳,获得10
17秒前
18秒前
老实的斌完成签到 ,获得积分10
19秒前
2425完成签到,获得积分10
20秒前
田様应助专一的戒指采纳,获得10
21秒前
fengwanru发布了新的文献求助10
21秒前
维尼熊完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
铅笔刀完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700