Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BoBo完成签到 ,获得积分10
1秒前
小波波波完成签到,获得积分10
2秒前
zhangyue7777发布了新的文献求助10
3秒前
落后的代秋完成签到 ,获得积分20
3秒前
俏皮的春天完成签到,获得积分10
4秒前
李爱国应助呆萌安萱采纳,获得10
4秒前
张淼完成签到,获得积分10
4秒前
4秒前
5秒前
jingjing发布了新的文献求助10
6秒前
6秒前
蒙开心完成签到,获得积分10
7秒前
10秒前
Whenryuan完成签到 ,获得积分10
11秒前
11秒前
11秒前
香蕉觅云应助nice1025采纳,获得10
12秒前
文献文献文献完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
ceds发布了新的文献求助10
15秒前
共享精神应助沉静的煎蛋采纳,获得10
16秒前
干净的寒天完成签到,获得积分10
16秒前
19秒前
佳期如梦发布了新的文献求助10
19秒前
棋棋233发布了新的文献求助10
19秒前
20秒前
21秒前
杨树完成签到,获得积分10
22秒前
我是老大应助北城无夏采纳,获得10
22秒前
脑洞疼应助fearless采纳,获得30
22秒前
22秒前
zoey完成签到 ,获得积分10
22秒前
赘婿应助XTQ采纳,获得10
23秒前
23秒前
25秒前
十六发布了新的文献求助10
25秒前
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687