Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
2秒前
3秒前
Akitten完成签到,获得积分10
3秒前
星之所在应助guojingjing采纳,获得10
4秒前
刻苦的黑米完成签到,获得积分10
4秒前
英俊的铭应助lyp采纳,获得10
4秒前
善学以致用应助xh采纳,获得10
4秒前
失眠宫苴发布了新的文献求助10
5秒前
5秒前
研友_85YNe8完成签到,获得积分10
5秒前
yy发布了新的文献求助10
6秒前
8秒前
jery完成签到,获得积分10
8秒前
10秒前
zino完成签到,获得积分10
11秒前
12秒前
13秒前
Yoyo完成签到 ,获得积分10
13秒前
开心的傲蕾完成签到,获得积分10
13秒前
xfxx完成签到,获得积分10
13秒前
李健的粉丝团团长应助zyy采纳,获得10
14秒前
JamesPei应助安静的半蕾采纳,获得10
15秒前
华仔应助粱夏烟采纳,获得10
15秒前
15秒前
SHAO发布了新的文献求助10
16秒前
16秒前
lyp发布了新的文献求助10
16秒前
王五一完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
酷波er应助紧张的惜梦采纳,获得10
20秒前
波谷发布了新的文献求助10
20秒前
20秒前
Dr_JennyZ完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901