Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Awei发布了新的文献求助10
1秒前
小二郎应助wy采纳,获得10
1秒前
李爱国应助YY采纳,获得10
1秒前
星辰大海应助舒服的士萧采纳,获得10
1秒前
ning完成签到 ,获得积分10
1秒前
无花果应助花飞飞凡采纳,获得10
1秒前
久燊完成签到,获得积分20
2秒前
4秒前
tengfei完成签到,获得积分10
4秒前
4秒前
DDDD发布了新的文献求助10
6秒前
陆程文完成签到,获得积分10
6秒前
6秒前
霞俊杰完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
Awei完成签到,获得积分10
7秒前
天天快乐应助牛贝贝采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
BowieHuang应助Ymir采纳,获得40
9秒前
9秒前
NexusExplorer应助1101592875采纳,获得10
9秒前
付研琪发布了新的文献求助10
9秒前
花灯王子完成签到,获得积分10
10秒前
Lqian_Yu完成签到 ,获得积分10
10秒前
小葛发布了新的文献求助10
10秒前
Kevin发布了新的文献求助20
11秒前
lzx完成签到,获得积分10
11秒前
ZIS发布了新的文献求助10
11秒前
吴帅发布了新的文献求助10
11秒前
11秒前
11秒前
keyanrubbish发布了新的文献求助10
11秒前
tangshijun完成签到,获得积分10
12秒前
12秒前
12秒前
子车茗应助sober采纳,获得20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836