Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助meng采纳,获得10
刚刚
ding应助踏实的白羊采纳,获得20
刚刚
nick发布了新的文献求助10
刚刚
英俊的铭应助鲜艳的访风采纳,获得10
1秒前
李健的粉丝团团长应助XHL采纳,获得10
2秒前
可爱花瓣发布了新的文献求助10
2秒前
折纸发布了新的文献求助10
2秒前
3秒前
3秒前
xx发布了新的文献求助10
3秒前
4秒前
闪闪完成签到,获得积分20
4秒前
科目三应助杨佳燕采纳,获得10
4秒前
大气的以寒完成签到,获得积分10
4秒前
5秒前
淋湿巴黎完成签到,获得积分10
5秒前
5秒前
6秒前
晨曦完成签到,获得积分10
6秒前
7秒前
7分运气完成签到,获得积分10
7秒前
张三发布了新的文献求助10
8秒前
草田水完成签到,获得积分10
9秒前
CNJX完成签到,获得积分10
9秒前
9秒前
彭于晏应助tony采纳,获得10
9秒前
Wonderland发布了新的文献求助10
9秒前
xcgh应助脆皮小小酥采纳,获得20
10秒前
燕子发布了新的文献求助30
10秒前
10秒前
11秒前
12秒前
13秒前
欢欢发布了新的文献求助10
13秒前
14秒前
15秒前
木木完成签到,获得积分10
15秒前
科研通AI6应助Amagi采纳,获得10
15秒前
所所应助自信的诗霜采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185