Frequentist andBayesiantolerance intervals for setting specification limits for left‐censored gamma distributed drug quality attributes

审查(临床试验) 贝叶斯概率 统计 公差间隔 置信区间 样本量测定 标称水平 可信区间 计算机科学 频数推理 数学 先验概率 贝叶斯推理
作者
Richard O. Montes
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:23 (2): 168-184
标识
DOI:10.1002/pst.2344
摘要

Abstract Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left‐censored data. When data has a long, right‐skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user‐friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real‐world examples are provided to illustrate the findings from the simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的海完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Azyyyy完成签到,获得积分10
4秒前
充电宝应助吃薯条采纳,获得10
4秒前
迅速斑马完成签到,获得积分10
4秒前
尔池完成签到,获得积分10
5秒前
nuonuo发布了新的文献求助10
5秒前
XZB完成签到,获得积分10
5秒前
陈砍砍完成签到 ,获得积分10
6秒前
6秒前
愉快的海发布了新的文献求助10
7秒前
7秒前
万海发布了新的文献求助10
8秒前
周山山完成签到 ,获得积分10
8秒前
ming完成签到 ,获得积分10
9秒前
无花果应助liyukun采纳,获得10
9秒前
9秒前
orixero应助紧张的毛衣采纳,获得10
10秒前
George发布了新的文献求助10
11秒前
CipherSage应助yxdjzwx采纳,获得20
13秒前
小富婆完成签到,获得积分10
13秒前
13秒前
pjson15376449841完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
深情安青应助章半仙采纳,获得10
16秒前
16秒前
doctor小陈发布了新的文献求助10
16秒前
科目三应助高兴的万宝路采纳,获得10
17秒前
乐乐应助顾文采纳,获得10
17秒前
18秒前
19秒前
19秒前
哦豁完成签到 ,获得积分10
19秒前
20秒前
júpiter发布了新的文献求助10
20秒前
louise应助刻苦秋尽采纳,获得10
21秒前
21秒前
hhl完成签到,获得积分10
21秒前
沉静的清涟完成签到,获得积分10
21秒前
zwjhbz完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812