A Method for Predicting the Creep Rupture Life of Small-Sample Materials Based on Parametric Models and Machine Learning Models

蠕动 参数统计 参数化模型 预测建模 计算机科学 机器学习 样品(材料) 人工智能 材料科学 统计 数学 复合材料 热力学 物理
作者
Xu Zhang,Jianyao Yao,Yulin Wu,Xuyang Liu,Changyin Wang,Fei Liu
出处
期刊:Materials [MDPI AG]
卷期号:16 (20): 6804-6804 被引量:4
标识
DOI:10.3390/ma16206804
摘要

In view of the differences in the applicability and prediction ability of different creep rupture life prediction models, we propose a creep rupture life prediction method in this paper. Various time–temperature parametric models, machine learning models, and a new method combining time–temperature parametric models with machine learning models are used to predict the creep rupture life of a small-sample material. The prediction accuracy of each model is quantitatively compared using model evaluation indicators (RMSE, MAPE, R2), and the output values of the most accurate model are used as the output values of the prediction method. The prediction method not only improves the applicability and accuracy of creep rupture life predictions but also quantifies the influence of each input variable on creep rupture life through the machine learning model. A new method is proposed in order to effectively take advantage of both advanced machine learning models and classical time–temperature parametric models. Parametric equations of creep rupture life, stress, and temperature are obtained using different time–temperature parametric models; then, creep rupture life data, obtained via equations under other temperature and stress conditions, are used to expand the training set data of different machine learning models. By expanding the data of different intervals, the problem of the low accuracy of the machine learning model for the small-sample material is solved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hh发布了新的文献求助10
刚刚
司马天寿发布了新的文献求助10
1秒前
上官若男应助lio采纳,获得10
1秒前
wsnice应助呼呼采纳,获得20
3秒前
科研通AI5应助善良的路灯采纳,获得10
3秒前
5秒前
司马天寿完成签到,获得积分20
7秒前
7秒前
汤圆完成签到,获得积分10
8秒前
bitahu发布了新的文献求助10
8秒前
希望天下0贩的0应助lixm采纳,获得10
8秒前
科研通AI2S应助敦敦采纳,获得10
9秒前
10秒前
_呱_应助楼台杏花琴弦采纳,获得50
11秒前
咸鱼一号发布了新的文献求助10
11秒前
正经俠发布了新的文献求助10
11秒前
李志远完成签到,获得积分10
12秒前
ghh发布了新的文献求助10
12秒前
13秒前
77paocai完成签到,获得积分10
14秒前
CCL完成签到,获得积分10
15秒前
明亮的绫完成签到 ,获得积分10
15秒前
祖诗云完成签到,获得积分0
16秒前
jiewen发布了新的文献求助10
18秒前
18秒前
Oz完成签到,获得积分10
18秒前
zhukun发布了新的文献求助10
19秒前
19秒前
22秒前
香蕉觅云应助oliver501采纳,获得10
22秒前
正经俠完成签到 ,获得积分20
23秒前
YY完成签到 ,获得积分10
24秒前
清秀灵薇发布了新的文献求助10
24秒前
LZL完成签到 ,获得积分10
24秒前
油焖青椒完成签到,获得积分10
24秒前
不会学术的羊完成签到,获得积分10
25秒前
25秒前
lio完成签到,获得积分20
26秒前
26秒前
FashionBoy应助汤浩宏采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849