Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study

随机森林 人工智能 特征选择 接收机工作特性 朴素贝叶斯分类器 医学 线性判别分析 威尔科克森符号秩检验 磁共振成像 数学 支持向量机 放射科 模式识别(心理学) 计算机科学 核医学 机器学习 内科学 曼惠特尼U检验
作者
Samira Abbaspour,Maedeh Barahman,Hamid Abdollahi,Hossein Arabalibeik,Ghasem Hajainfar,Mohammadreza Babaei,Hamed Iraji,Mohammadreza Barzegartahamtan,Mohammad Reza Ay,Seied Rabi Mahdavi
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (1): 015017-015017 被引量:12
标识
DOI:10.1088/2057-1976/ad0f3e
摘要

Abstract Purpose. This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients. Methods. A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity. Results. A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5–1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5–2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT. Conclusion. Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨春末发布了新的文献求助10
刚刚
phoenixsun完成签到,获得积分20
刚刚
ww完成签到,获得积分10
1秒前
在水一方应助最好的我们采纳,获得10
1秒前
HDY完成签到,获得积分10
1秒前
共享精神应助独角兽采纳,获得10
2秒前
2秒前
微光完成签到 ,获得积分10
2秒前
乾坤完成签到,获得积分10
2秒前
科研啊科研完成签到,获得积分10
3秒前
狐狸小姐完成签到,获得积分10
3秒前
江屿完成签到,获得积分10
4秒前
4秒前
CodeCraft应助学术长颈鹿采纳,获得10
4秒前
旷意完成签到,获得积分10
5秒前
木瑾完成签到 ,获得积分10
5秒前
陈慧琳发布了新的文献求助10
5秒前
帅气的杰瑞完成签到,获得积分10
5秒前
zyyyyyyyy完成签到 ,获得积分10
6秒前
白小超人完成签到 ,获得积分10
6秒前
chemhub完成签到,获得积分10
7秒前
干净月亮完成签到,获得积分10
7秒前
波里舞完成签到 ,获得积分10
7秒前
小欢完成签到,获得积分10
8秒前
8秒前
9秒前
xiaoguizl完成签到,获得积分10
9秒前
看文献的高光谱完成签到,获得积分10
9秒前
陈早早完成签到,获得积分10
9秒前
Lily完成签到,获得积分10
10秒前
10秒前
整齐的冰珍完成签到,获得积分10
10秒前
玻璃外的世界完成签到,获得积分10
11秒前
lee1992完成签到,获得积分10
11秒前
ZERO110完成签到,获得积分20
12秒前
sasa完成签到,获得积分10
13秒前
brd完成签到,获得积分10
13秒前
果酱君完成签到,获得积分10
13秒前
游悠悠完成签到,获得积分10
13秒前
托托完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5358458
求助须知:如何正确求助?哪些是违规求助? 4489594
关于积分的说明 13974558
捐赠科研通 4391418
什么是DOI,文献DOI怎么找? 2412444
邀请新用户注册赠送积分活动 1405051
关于科研通互助平台的介绍 1379635