Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study

随机森林 人工智能 特征选择 接收机工作特性 朴素贝叶斯分类器 医学 线性判别分析 威尔科克森符号秩检验 磁共振成像 数学 支持向量机 放射科 模式识别(心理学) 计算机科学 核医学 机器学习 内科学 曼惠特尼U检验
作者
Samira Abbaspour,Maedeh Barahman,Hamid Abdollahi,Hossein Arabalibeik,Ghasem Hajainfar,Mohammadreza Babaei,Hamed Iraji,Mohammadreza Barzegartahamtan,Mohammad Reza Ay,Seied Rabi Mahdavi
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (1): 015017-015017 被引量:6
标识
DOI:10.1088/2057-1976/ad0f3e
摘要

Abstract Purpose. This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients. Methods. A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity. Results. A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5–1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5–2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT. Conclusion. Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗明芳完成签到,获得积分20
1秒前
1秒前
Blankcanva发布了新的文献求助10
2秒前
owlhealth完成签到,获得积分10
2秒前
2秒前
11完成签到,获得积分10
2秒前
个木发布了新的文献求助10
3秒前
3秒前
Zylk完成签到,获得积分10
3秒前
3秒前
4秒前
绝迹发布了新的文献求助10
4秒前
米兰的小铁匠完成签到 ,获得积分10
4秒前
Owen应助迈安纳采纳,获得10
5秒前
盼盼完成签到,获得积分10
5秒前
卢伟发布了新的文献求助30
5秒前
hh0发布了新的文献求助10
5秒前
6秒前
慕青应助Yippee采纳,获得10
6秒前
坚强映菱完成签到,获得积分10
7秒前
NexusExplorer应助闹闹采纳,获得10
7秒前
清脆松发布了新的文献求助10
7秒前
7秒前
DUANG-Jerry完成签到,获得积分10
7秒前
追寻的机器猫完成签到 ,获得积分10
8秒前
羊知鱼完成签到,获得积分10
8秒前
cc发布了新的文献求助10
8秒前
所所应助薛西采纳,获得10
8秒前
9秒前
9秒前
CipherSage应助迷路的天蓉采纳,获得10
9秒前
Eopue完成签到,获得积分20
9秒前
cctv18应助个木采纳,获得10
10秒前
深情安青应助个木采纳,获得10
10秒前
BonnieO发布了新的文献求助10
10秒前
咸鸭蛋完成签到 ,获得积分10
10秒前
白小超人完成签到 ,获得积分10
10秒前
volcano完成签到 ,获得积分10
11秒前
小柒发布了新的文献求助10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245545
求助须知:如何正确求助?哪些是违规求助? 2889187
关于积分的说明 8257144
捐赠科研通 2557542
什么是DOI,文献DOI怎么找? 1386164
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626568