已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study

随机森林 人工智能 特征选择 接收机工作特性 朴素贝叶斯分类器 医学 线性判别分析 威尔科克森符号秩检验 磁共振成像 数学 支持向量机 放射科 模式识别(心理学) 计算机科学 核医学 机器学习 内科学 曼惠特尼U检验
作者
Samira Abbaspour,Maedeh Barahman,Hamid Abdollahi,Hossein Arabalibeik,Ghasem Hajainfar,Mohammadreza Babaei,Hamed Iraji,Mohammadreza Barzegartahamtan,Mohammad Reza Ay,Seied Rabi Mahdavi
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (1): 015017-015017 被引量:6
标识
DOI:10.1088/2057-1976/ad0f3e
摘要

Abstract Purpose. This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients. Methods. A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity. Results. A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5–1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5–2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT. Conclusion. Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
2秒前
2秒前
自然的南露完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
NexusExplorer应助Trista采纳,获得10
4秒前
4秒前
4秒前
Spectrum_07完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
酷波er应助lei采纳,获得10
9秒前
12秒前
大模型应助123采纳,获得10
12秒前
Hello应助lay采纳,获得10
17秒前
云墨完成签到 ,获得积分10
18秒前
深情安青应助111采纳,获得10
18秒前
LI完成签到,获得积分20
19秒前
無屿啊-完成签到,获得积分10
20秒前
Ava应助学习。。采纳,获得10
21秒前
fancynancy应助Yatpome采纳,获得20
21秒前
23秒前
25秒前
烟花应助机灵柚子采纳,获得10
28秒前
29秒前
111发布了新的文献求助10
30秒前
Ben发布了新的文献求助10
35秒前
35秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021