The Characteristics of Driver Lane-Changing Behavior in Congested Road Environments

交通拥挤 计算机科学 模拟 聚类分析 航程(航空) 驾驶模拟器 持续时间(音乐) 实时计算 运输工程 人工智能 工程类 声学 物理 航空航天工程
作者
Wanqi Wang,Guozhu Cheng
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (3)
标识
DOI:10.1093/tse/tdad039
摘要

Abstract Lane-changing behaviour is one of the complex driving behaviours. The lane-changing behaviour of drivers may exacerbate congestion, however driver behavioural characteristics are difficult to accurately acquire and quantify, and thus tend to be simplified or ignored in existing lane-changing models. In this paper, the Bik-means clustering algorithm is used to analyse the urban road congestion state discrimination method. Then, simulated driving tests were conducted for different traffic congestion conditions. Through the force feedback system and infrared camera, the data of driver lane-changing behaviours at different traffic congestion levels are obtained separately, and the definitions of the start and end points of a vehicle changing lanes are determined. Furthermore, statistical analysis and discussion of key feature parameters including driver lane-changing behaviour data and visual data under different levels of traffic congestion were conducted. It is found that the average lane-change intention times in each congestion state are 2 s, 4 s, 6 s and 7 s, while the turn-signal duration and the number of rear-view mirror observations have similar patterns of change to the data on lane-changing intention duration. Moreover, drivers’ pupil diameters become smaller during the lane-changing intention phase, and then relatively enlarge during lane-changing; the range of pupil variation is roughly 3.5 mm to 4 mm. The frequency of observing the vehicle in front of the target lane increased as the level of congestion increased, and the frequency of observation in the driver's mirrors while changing lanes approximately doubled compared to driving straight ahead, and this ratio increased as the level of congestion increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
称心乐枫完成签到,获得积分10
2秒前
2秒前
22发布了新的文献求助10
2秒前
berry发布了新的文献求助10
2秒前
kingmin应助毛慢慢采纳,获得10
3秒前
完美世界应助顺利鱼采纳,获得10
4秒前
搜集达人应助招财不肥采纳,获得10
5秒前
sweetbearm应助李秋静采纳,获得10
5秒前
Michael_li完成签到,获得积分10
5秒前
whs完成签到,获得积分10
7秒前
科研通AI5应助xlj采纳,获得10
8秒前
再干一杯发布了新的文献求助10
8秒前
9秒前
满意的天完成签到 ,获得积分10
9秒前
luoshiwen完成签到,获得积分10
9秒前
落寞的觅柔完成签到,获得积分10
11秒前
12秒前
LUNWENREQUEST发布了新的文献求助10
12秒前
13秒前
14秒前
123cxj完成签到,获得积分10
17秒前
CO2发布了新的文献求助10
17秒前
summer发布了新的文献求助10
17秒前
18秒前
Xx.发布了新的文献求助10
18秒前
大大关注了科研通微信公众号
18秒前
稚祎完成签到 ,获得积分10
18秒前
18秒前
CodeCraft应助东东采纳,获得10
19秒前
20秒前
叽里咕噜完成签到 ,获得积分10
21秒前
田様应助zccc采纳,获得10
22秒前
隐形的雁完成签到,获得积分10
22秒前
追寻的秋玲完成签到,获得积分10
23秒前
李繁蕊发布了新的文献求助10
23秒前
24秒前
舒心的紫雪完成签到 ,获得积分10
25秒前
25秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808