The characteristics of driver lane-changing behaviour in congested road environments

交通拥挤 计算机科学 模拟 聚类分析 航程(航空) 持续时间(音乐) 实时计算 运输工程 人工智能 工程类 声学 物理 航空航天工程
作者
Wanqi Wang,Guozhu Cheng
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (3) 被引量:1
标识
DOI:10.1093/tse/tdad039
摘要

Abstract Lane-changing behaviour is one of the complex driving behaviours. The lane-changing behaviour of drivers may exacerbate congestion, however driver behavioural characteristics are difficult to accurately acquire and quantify, and thus tend to be simplified or ignored in existing lane-changing models. In this paper, the Bik-means clustering algorithm is used to analyse the urban road congestion state discrimination method. Then, simulated driving tests were conducted for different traffic congestion conditions. Through the force feedback system and infrared camera, the data of driver lane-changing behaviours at different traffic congestion levels are obtained separately, and the definitions of the start and end points of a vehicle changing lanes are determined. Furthermore, statistical analysis and discussion of key feature parameters including driver lane-changing behaviour data and visual data under different levels of traffic congestion were conducted. It is found that the average lane-change intention times in each congestion state are 2 s, 4 s, 6 s and 7 s, while the turn-signal duration and the number of rear-view mirror observations have similar patterns of change to the data on lane-changing intention duration. Moreover, drivers’ pupil diameters become smaller during the lane-changing intention phase, and then relatively enlarge during lane-changing; the range of pupil variation is roughly 3.5 mm to 4 mm. The frequency of observing the vehicle in front of the target lane increased as the level of congestion increased, and the frequency of observation in the driver's mirrors while changing lanes approximately doubled compared to driving straight ahead, and this ratio increased as the level of congestion increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷路凌柏发布了新的文献求助10
1秒前
杜杜完成签到,获得积分10
1秒前
天天向上完成签到,获得积分10
1秒前
3秒前
伟蓓1314完成签到,获得积分10
4秒前
Asystasia7发布了新的文献求助10
4秒前
4秒前
Owen应助Davy_Y采纳,获得10
5秒前
suchui完成签到,获得积分10
5秒前
沉静的含海完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助keep采纳,获得10
8秒前
8秒前
Lucas应助摇瓶子的蜗牛采纳,获得10
9秒前
帮帮孩子完成签到,获得积分10
10秒前
10秒前
123456完成签到 ,获得积分10
11秒前
11秒前
钰天心应助余问芙采纳,获得10
12秒前
12秒前
All_too_well发布了新的文献求助10
12秒前
heisproton发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
十八稀发布了新的文献求助10
14秒前
14秒前
机智翼发布了新的文献求助10
14秒前
suijinicheng完成签到,获得积分10
14秒前
科研小白发布了新的文献求助10
15秒前
ding应助伶俐的平蓝采纳,获得10
16秒前
16秒前
YXY完成签到,获得积分20
16秒前
英俊的铭应助明理的枫叶采纳,获得10
16秒前
爆米花应助丫丫采纳,获得10
17秒前
6666发布了新的文献求助10
17秒前
呃呃呃c发布了新的文献求助10
17秒前
英俊的铭应助多吃元气饭采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758