重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The characteristics of driver lane-changing behaviour in congested road environments

交通拥挤 计算机科学 模拟 聚类分析 航程(航空) 持续时间(音乐) 实时计算 运输工程 人工智能 工程类 声学 物理 航空航天工程
作者
Wanqi Wang,Guozhu Cheng
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (3) 被引量:1
标识
DOI:10.1093/tse/tdad039
摘要

Abstract Lane-changing behaviour is one of the complex driving behaviours. The lane-changing behaviour of drivers may exacerbate congestion, however driver behavioural characteristics are difficult to accurately acquire and quantify, and thus tend to be simplified or ignored in existing lane-changing models. In this paper, the Bik-means clustering algorithm is used to analyse the urban road congestion state discrimination method. Then, simulated driving tests were conducted for different traffic congestion conditions. Through the force feedback system and infrared camera, the data of driver lane-changing behaviours at different traffic congestion levels are obtained separately, and the definitions of the start and end points of a vehicle changing lanes are determined. Furthermore, statistical analysis and discussion of key feature parameters including driver lane-changing behaviour data and visual data under different levels of traffic congestion were conducted. It is found that the average lane-change intention times in each congestion state are 2 s, 4 s, 6 s and 7 s, while the turn-signal duration and the number of rear-view mirror observations have similar patterns of change to the data on lane-changing intention duration. Moreover, drivers’ pupil diameters become smaller during the lane-changing intention phase, and then relatively enlarge during lane-changing; the range of pupil variation is roughly 3.5 mm to 4 mm. The frequency of observing the vehicle in front of the target lane increased as the level of congestion increased, and the frequency of observation in the driver's mirrors while changing lanes approximately doubled compared to driving straight ahead, and this ratio increased as the level of congestion increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助纸柒采纳,获得50
1秒前
1秒前
Chen发布了新的文献求助10
2秒前
2秒前
李健应助JAY采纳,获得10
4秒前
古月方源发布了新的文献求助10
4秒前
4秒前
汉堡包应助细小采纳,获得10
4秒前
乒乓完成签到,获得积分10
5秒前
酷波er应助秀秀采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
自信半梦发布了新的文献求助10
6秒前
码头整点薯条完成签到,获得积分10
7秒前
蓓蓓0303发布了新的文献求助10
7秒前
英姑应助shizi采纳,获得10
8秒前
真实的馒头完成签到,获得积分10
9秒前
10秒前
12秒前
12321完成签到,获得积分10
13秒前
wjw完成签到,获得积分10
13秒前
细小完成签到,获得积分20
13秒前
14秒前
14秒前
火星上的海亦完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
脑洞疼应助刘举慧采纳,获得10
17秒前
小恶于发布了新的文献求助10
17秒前
神勇魂幽完成签到 ,获得积分10
18秒前
暗恋发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
LS发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
细小发布了新的文献求助10
20秒前
Jasper应助汕头凯奇采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777