The characteristics of driver lane-changing behaviour in congested road environments

交通拥挤 计算机科学 模拟 聚类分析 航程(航空) 持续时间(音乐) 实时计算 运输工程 人工智能 工程类 声学 物理 航空航天工程
作者
Wanqi Wang,Guozhu Cheng
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (3) 被引量:1
标识
DOI:10.1093/tse/tdad039
摘要

Abstract Lane-changing behaviour is one of the complex driving behaviours. The lane-changing behaviour of drivers may exacerbate congestion, however driver behavioural characteristics are difficult to accurately acquire and quantify, and thus tend to be simplified or ignored in existing lane-changing models. In this paper, the Bik-means clustering algorithm is used to analyse the urban road congestion state discrimination method. Then, simulated driving tests were conducted for different traffic congestion conditions. Through the force feedback system and infrared camera, the data of driver lane-changing behaviours at different traffic congestion levels are obtained separately, and the definitions of the start and end points of a vehicle changing lanes are determined. Furthermore, statistical analysis and discussion of key feature parameters including driver lane-changing behaviour data and visual data under different levels of traffic congestion were conducted. It is found that the average lane-change intention times in each congestion state are 2 s, 4 s, 6 s and 7 s, while the turn-signal duration and the number of rear-view mirror observations have similar patterns of change to the data on lane-changing intention duration. Moreover, drivers’ pupil diameters become smaller during the lane-changing intention phase, and then relatively enlarge during lane-changing; the range of pupil variation is roughly 3.5 mm to 4 mm. The frequency of observing the vehicle in front of the target lane increased as the level of congestion increased, and the frequency of observation in the driver's mirrors while changing lanes approximately doubled compared to driving straight ahead, and this ratio increased as the level of congestion increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助kytkk采纳,获得10
刚刚
yuyuyuyuyuyuyu完成签到,获得积分10
刚刚
123654完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
852应助Two-Capitals采纳,获得10
1秒前
无花果应助JoaquinH采纳,获得10
2秒前
二雷子发布了新的文献求助10
2秒前
lb发布了新的文献求助30
2秒前
2秒前
2秒前
冷艳的咖啡完成签到,获得积分10
2秒前
天地侵略者完成签到,获得积分10
2秒前
3秒前
man完成签到 ,获得积分10
3秒前
Refuel完成签到,获得积分10
3秒前
Tengami应助英勇无敌采纳,获得20
3秒前
3秒前
隐形曼青应助小吉麻麻采纳,获得10
3秒前
lll完成签到,获得积分10
4秒前
Huang发布了新的文献求助10
4秒前
酷波er应助佩琦采纳,获得10
4秒前
4秒前
5秒前
xyma9408完成签到,获得积分10
5秒前
melody发布了新的文献求助10
5秒前
顾矜应助yanxi采纳,获得10
5秒前
叶子发布了新的文献求助20
5秒前
Huang发布了新的文献求助10
5秒前
科研通AI6应助白白采纳,获得10
5秒前
DUBUYINKE完成签到,获得积分10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
科研通AI6应助柔情公蚂蚁采纳,获得30
6秒前
超帅妙竹完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251