The characteristics of driver lane-changing behaviour in congested road environments

交通拥挤 计算机科学 模拟 聚类分析 航程(航空) 持续时间(音乐) 实时计算 运输工程 人工智能 工程类 声学 物理 航空航天工程
作者
Wanqi Wang,Guozhu Cheng
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (3) 被引量:1
标识
DOI:10.1093/tse/tdad039
摘要

Abstract Lane-changing behaviour is one of the complex driving behaviours. The lane-changing behaviour of drivers may exacerbate congestion, however driver behavioural characteristics are difficult to accurately acquire and quantify, and thus tend to be simplified or ignored in existing lane-changing models. In this paper, the Bik-means clustering algorithm is used to analyse the urban road congestion state discrimination method. Then, simulated driving tests were conducted for different traffic congestion conditions. Through the force feedback system and infrared camera, the data of driver lane-changing behaviours at different traffic congestion levels are obtained separately, and the definitions of the start and end points of a vehicle changing lanes are determined. Furthermore, statistical analysis and discussion of key feature parameters including driver lane-changing behaviour data and visual data under different levels of traffic congestion were conducted. It is found that the average lane-change intention times in each congestion state are 2 s, 4 s, 6 s and 7 s, while the turn-signal duration and the number of rear-view mirror observations have similar patterns of change to the data on lane-changing intention duration. Moreover, drivers’ pupil diameters become smaller during the lane-changing intention phase, and then relatively enlarge during lane-changing; the range of pupil variation is roughly 3.5 mm to 4 mm. The frequency of observing the vehicle in front of the target lane increased as the level of congestion increased, and the frequency of observation in the driver's mirrors while changing lanes approximately doubled compared to driving straight ahead, and this ratio increased as the level of congestion increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼巧曼发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
快乐的云发布了新的文献求助10
3秒前
英姑应助Qps采纳,获得10
4秒前
7秒前
7秒前
flora发布了新的文献求助10
7秒前
魂梦与君同完成签到 ,获得积分10
8秒前
酷波er应助su采纳,获得10
8秒前
9秒前
聪明新筠完成签到,获得积分10
9秒前
活泼巧曼完成签到,获得积分10
9秒前
充电宝应助肚子饿了采纳,获得10
9秒前
10秒前
10秒前
七木完成签到,获得积分10
10秒前
11秒前
归尘发布了新的文献求助10
12秒前
12秒前
12秒前
小文_official完成签到 ,获得积分10
13秒前
thunder完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
氨气完成签到 ,获得积分10
14秒前
震动的曲奇完成签到,获得积分10
14秒前
15秒前
12345发布了新的文献求助10
15秒前
16秒前
上官若男应助333采纳,获得10
16秒前
17秒前
进击的软骨完成签到,获得积分10
17秒前
JamesPei应助茶米采纳,获得10
17秒前
17秒前
初一发布了新的文献求助10
18秒前
18秒前
汉堡包应助sinlar采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207