The characteristics of driver lane-changing behaviour in congested road environments

交通拥挤 计算机科学 模拟 聚类分析 航程(航空) 持续时间(音乐) 实时计算 运输工程 人工智能 工程类 声学 物理 航空航天工程
作者
Wanqi Wang,Guozhu Cheng
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (3) 被引量:1
标识
DOI:10.1093/tse/tdad039
摘要

Abstract Lane-changing behaviour is one of the complex driving behaviours. The lane-changing behaviour of drivers may exacerbate congestion, however driver behavioural characteristics are difficult to accurately acquire and quantify, and thus tend to be simplified or ignored in existing lane-changing models. In this paper, the Bik-means clustering algorithm is used to analyse the urban road congestion state discrimination method. Then, simulated driving tests were conducted for different traffic congestion conditions. Through the force feedback system and infrared camera, the data of driver lane-changing behaviours at different traffic congestion levels are obtained separately, and the definitions of the start and end points of a vehicle changing lanes are determined. Furthermore, statistical analysis and discussion of key feature parameters including driver lane-changing behaviour data and visual data under different levels of traffic congestion were conducted. It is found that the average lane-change intention times in each congestion state are 2 s, 4 s, 6 s and 7 s, while the turn-signal duration and the number of rear-view mirror observations have similar patterns of change to the data on lane-changing intention duration. Moreover, drivers’ pupil diameters become smaller during the lane-changing intention phase, and then relatively enlarge during lane-changing; the range of pupil variation is roughly 3.5 mm to 4 mm. The frequency of observing the vehicle in front of the target lane increased as the level of congestion increased, and the frequency of observation in the driver's mirrors while changing lanes approximately doubled compared to driving straight ahead, and this ratio increased as the level of congestion increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mmd完成签到 ,获得积分10
1秒前
1秒前
潇洒夏天完成签到,获得积分10
4秒前
科研小白发布了新的文献求助20
5秒前
NXK发布了新的文献求助10
6秒前
柔弱熊猫完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助pp‘s采纳,获得10
8秒前
Liii发布了新的文献求助10
8秒前
唐唐完成签到,获得积分10
9秒前
直率凝丝完成签到,获得积分10
9秒前
文静不凡发布了新的文献求助10
11秒前
花已烬完成签到,获得积分10
11秒前
浮游应助lina采纳,获得10
12秒前
天上白玉京完成签到,获得积分10
14秒前
14秒前
回来完成签到,获得积分10
16秒前
玩是罪恶的完成签到,获得积分10
17秒前
17秒前
小二郎应助NXK采纳,获得10
20秒前
21秒前
21秒前
沉静的浩然完成签到,获得积分10
22秒前
激情的健柏完成签到 ,获得积分10
23秒前
TanXu完成签到 ,获得积分10
24秒前
Jacob_Zhao发布了新的文献求助10
25秒前
ding应助沉静的曼荷采纳,获得10
28秒前
28秒前
七子完成签到 ,获得积分10
28秒前
务实的惜寒完成签到,获得积分20
32秒前
swslgd关注了科研通微信公众号
32秒前
蔺不平发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
33秒前
廿三完成签到,获得积分10
36秒前
梦月完成签到,获得积分10
36秒前
jake完成签到,获得积分10
37秒前
bkagyin应助jos采纳,获得10
38秒前
雨辰完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910800
求助须知:如何正确求助?哪些是违规求助? 4186436
关于积分的说明 12999674
捐赠科研通 3953973
什么是DOI,文献DOI怎么找? 2168240
邀请新用户注册赠送积分活动 1186607
关于科研通互助平台的介绍 1093909