Artificial intelligence for prenatal chromosome analysis

人工智能 概化理论 三体 特征选择 产前诊断 机器学习 计算机科学 特征(语言学) 生物信息学 医学 心理学 生物 怀孕 遗传学 发展心理学 胎儿 哲学 语言学
作者
Kavitha Boddupally,Esther Rani Thuraka
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:552: 117669-117669
标识
DOI:10.1016/j.cca.2023.117669
摘要

This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助健壮凡桃采纳,获得10
1秒前
Grace应助健壮凡桃采纳,获得10
1秒前
赘婿应助健壮凡桃采纳,获得10
1秒前
啊啊啊完成签到 ,获得积分10
1秒前
1秒前
星期五完成签到 ,获得积分10
3秒前
4秒前
4秒前
深情安青应助派大星采纳,获得10
5秒前
5秒前
7秒前
好香的眼睛完成签到,获得积分10
9秒前
一颗葡萄发布了新的文献求助10
9秒前
9秒前
情怀应助czj采纳,获得10
9秒前
10秒前
尤尔竹发布了新的文献求助10
11秒前
不配.给不安冷风的求助进行了留言
11秒前
ABiao发布了新的文献求助10
11秒前
棉棉完成签到,获得积分10
12秒前
细心雨兰发布了新的文献求助10
12秒前
12秒前
ljy发布了新的文献求助20
13秒前
1874发布了新的文献求助10
13秒前
14秒前
YYP发布了新的文献求助10
15秒前
16秒前
16秒前
HHh发布了新的文献求助10
18秒前
bluse033发布了新的文献求助10
19秒前
齐德龙发布了新的文献求助10
19秒前
852应助doctorbba采纳,获得10
19秒前
一颗葡萄完成签到,获得积分10
21秒前
xi122完成签到 ,获得积分10
23秒前
tiangou发布了新的文献求助10
24秒前
单薄沐夏完成签到,获得积分10
24秒前
25秒前
HHh完成签到,获得积分10
25秒前
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478