Artificial intelligence for prenatal chromosome analysis

人工智能 概化理论 三体 特征选择 产前诊断 机器学习 计算机科学 特征(语言学) 生物信息学 医学 心理学 生物 怀孕 遗传学 发展心理学 胎儿 哲学 语言学
作者
Kavitha Boddupally,Esther Rani Thuraka
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:552: 117669-117669
标识
DOI:10.1016/j.cca.2023.117669
摘要

This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的立果完成签到,获得积分10
刚刚
SY发布了新的文献求助20
刚刚
刚刚
CNS漏网之鱼完成签到,获得积分10
刚刚
JMchiefEditor完成签到,获得积分10
1秒前
木火灰发布了新的文献求助20
2秒前
MOMOTG完成签到,获得积分10
2秒前
今后应助xx采纳,获得10
2秒前
TheMonster完成签到,获得积分10
3秒前
乐观稀完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
科研通AI6.1应助冷傲书萱采纳,获得10
3秒前
3秒前
3秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
闪闪孤风应助科研通管家采纳,获得10
4秒前
4秒前
蓝鲸使徒应助科研通管家采纳,获得20
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
oxygen发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
爱搬玉米发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609