Artificial intelligence for prenatal chromosome analysis

人工智能 概化理论 三体 特征选择 产前诊断 机器学习 计算机科学 特征(语言学) 生物信息学 医学 心理学 生物 怀孕 遗传学 发展心理学 胎儿 哲学 语言学
作者
Kavitha Boddupally,Esther Rani Thuraka
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:552: 117669-117669
标识
DOI:10.1016/j.cca.2023.117669
摘要

This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RAmos_1982完成签到,获得积分10
刚刚
刘利林发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
yjt50523完成签到 ,获得积分10
2秒前
2秒前
2秒前
胡图图发布了新的文献求助10
3秒前
qym发布了新的文献求助10
3秒前
小鱼美美完成签到,获得积分10
3秒前
忧郁道之完成签到 ,获得积分10
4秒前
4秒前
包容的碧灵完成签到,获得积分10
5秒前
Wind举报爱笑求助涉嫌违规
5秒前
6秒前
7秒前
7秒前
7秒前
能干的捕完成签到,获得积分10
8秒前
niu应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
顺弟er完成签到,获得积分10
8秒前
Lin应助科研通管家采纳,获得10
9秒前
9秒前
Lin应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
慕青应助包宇采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
子车茗应助科研通管家采纳,获得30
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
niu应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
黄奥龙发布了新的文献求助10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583465
求助须知:如何正确求助?哪些是违规求助? 4667303
关于积分的说明 14766350
捐赠科研通 4609471
什么是DOI,文献DOI怎么找? 2529219
邀请新用户注册赠送积分活动 1498433
关于科研通互助平台的介绍 1467061