Artificial intelligence for prenatal chromosome analysis

人工智能 概化理论 三体 特征选择 产前诊断 机器学习 计算机科学 特征(语言学) 生物信息学 医学 心理学 生物 怀孕 遗传学 发展心理学 胎儿 语言学 哲学
作者
Kavitha Boddupally,Esther Rani Thuraka
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:552: 117669-117669
标识
DOI:10.1016/j.cca.2023.117669
摘要

This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
科研通AI5应助无悔呀采纳,获得10
2秒前
2秒前
littlewhite关注了科研通微信公众号
3秒前
3秒前
零点起步完成签到,获得积分10
3秒前
慕青应助大力的含卉采纳,获得10
3秒前
善良过客发布了新的文献求助10
4秒前
4秒前
4秒前
dildil发布了新的文献求助10
4秒前
4秒前
hu970发布了新的文献求助10
5秒前
5秒前
王思鲁发布了新的文献求助30
5秒前
七个小矮人完成签到,获得积分10
6秒前
Aria完成签到,获得积分10
6秒前
感性的安露应助结实雪卉采纳,获得20
7秒前
零点起步发布了新的文献求助10
8秒前
故意的傲玉应助Ll采纳,获得10
8秒前
斯文败类应助xiuxiu_27采纳,获得10
8秒前
胖子完成签到,获得积分10
8秒前
王巧巧完成签到,获得积分10
8秒前
tangsuyun发布了新的文献求助10
9秒前
祝顺遂发布了新的文献求助10
9秒前
Seven发布了新的文献求助10
9秒前
土拨鼠完成签到 ,获得积分10
10秒前
邢夏之发布了新的文献求助10
10秒前
漂亮芹菜完成签到,获得积分10
10秒前
ZXH完成签到,获得积分10
10秒前
Evelyn完成签到 ,获得积分10
10秒前
习习应助sb采纳,获得10
11秒前
11秒前
11秒前
斯文败类应助liu采纳,获得10
12秒前
12秒前
gy发布了新的文献求助10
12秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759