已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence for prenatal chromosome analysis

人工智能 概化理论 三体 特征选择 产前诊断 机器学习 计算机科学 特征(语言学) 生物信息学 医学 心理学 生物 怀孕 遗传学 发展心理学 胎儿 哲学 语言学
作者
Kavitha Boddupally,Esther Rani Thuraka
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:552: 117669-117669
标识
DOI:10.1016/j.cca.2023.117669
摘要

This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CVI发布了新的文献求助10
1秒前
3秒前
4秒前
勤劳的夏青完成签到 ,获得积分10
8秒前
8秒前
小李子发布了新的文献求助10
9秒前
传奇3应助ceeray23采纳,获得20
9秒前
wg发布了新的文献求助10
10秒前
10秒前
大猫完成签到,获得积分10
11秒前
11秒前
13秒前
从容芮应助萝卜青菜采纳,获得80
14秒前
丘比特应助阳光的冬天采纳,获得10
14秒前
aafrr完成签到 ,获得积分10
14秒前
14秒前
air发布了新的文献求助10
15秒前
16秒前
虚幻诗柳应助大熊采纳,获得10
17秒前
Believer完成签到,获得积分10
17秒前
李易安发布了新的文献求助10
17秒前
17秒前
yhyhyhyh发布了新的文献求助10
17秒前
科研小白一枚完成签到,获得积分10
19秒前
20秒前
情怀应助眼泪成诗采纳,获得10
20秒前
hsy发布了新的文献求助10
21秒前
不与旋覆应助高大的蜡烛采纳,获得10
22秒前
brotherpeng完成签到 ,获得积分10
23秒前
健壮橘子发布了新的文献求助10
23秒前
金钱发布了新的文献求助10
23秒前
科研通AI5应助hsy采纳,获得10
25秒前
里清水完成签到 ,获得积分10
26秒前
26秒前
wg发布了新的文献求助10
26秒前
王王赵完成签到,获得积分20
27秒前
合适熊猫完成签到 ,获得积分10
27秒前
jojo关注了科研通微信公众号
28秒前
drzz完成签到,获得积分10
30秒前
任性迎南发布了新的文献求助10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209342
求助须知:如何正确求助?哪些是违规求助? 4386549
关于积分的说明 13661248
捐赠科研通 4245756
什么是DOI,文献DOI怎么找? 2329480
邀请新用户注册赠送积分活动 1327278
关于科研通互助平台的介绍 1279575