已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence for prenatal chromosome analysis

人工智能 概化理论 三体 特征选择 产前诊断 机器学习 计算机科学 特征(语言学) 生物信息学 医学 心理学 生物 怀孕 遗传学 发展心理学 胎儿 语言学 哲学
作者
Kavitha Boddupally,Esther Rani Thuraka
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:552: 117669-117669
标识
DOI:10.1016/j.cca.2023.117669
摘要

This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
HunterKK7完成签到,获得积分10
3秒前
3秒前
HC驳回了Jasper应助
4秒前
5秒前
huangy发布了新的文献求助10
6秒前
与于发布了新的文献求助10
10秒前
Hesper完成签到 ,获得积分10
11秒前
杜客完成签到,获得积分10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
爱听歌的悒完成签到 ,获得积分10
15秒前
HunterKK7发布了新的文献求助10
16秒前
xq完成签到,获得积分10
23秒前
李姝完成签到 ,获得积分10
24秒前
28秒前
充电宝应助HunterKK7采纳,获得10
29秒前
空白格完成签到 ,获得积分10
31秒前
七月的July完成签到 ,获得积分10
32秒前
HarryYang完成签到,获得积分10
34秒前
35秒前
Ultraman45发布了新的文献求助10
36秒前
39秒前
susan完成签到 ,获得积分10
40秒前
40秒前
二十八亩田完成签到 ,获得积分10
40秒前
42秒前
43秒前
HC发布了新的文献求助10
44秒前
47秒前
Pengy发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
52秒前
52秒前
科研通AI5应助domingo采纳,获得10
52秒前
李李发布了新的文献求助10
57秒前
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613