Generative Adversarial Networks

计算机科学 鉴别器 对抗制 生成语法 发电机(电路理论) 可扩展性 人工智能 规范化(社会学) 深度学习 钥匙(锁) 数据科学 机器学习 电信 功率(物理) 物理 计算机安全 量子力学 数据库 探测器 社会学 人类学
作者
Moez Krichen
标识
DOI:10.1109/icccnt56998.2023.10306417
摘要

Generative Adversarial Networks (GANs) are a type of deep learning techniques that have shown remarkable success in generating realistic images, videos, and other types of data. This paper provides a comprehensive guide to GANs, covering their architecture, loss functions, training methods, applications, evaluation metrics, challenges, and future directions. We begin with an introduction to GANs and their historical development, followed by a review of the background and related work. We then provide a detailed overview of the GAN architecture, including the generator and discriminator networks, and discuss the key design choices and variations. Next, we review the loss functions utilized in GANs, including the original minimax objective, as well as more recent approaches s.a. Wasserstein distance and gradient penalty. We then delve into the training of GANs, discussing common techniques s.a. alternating optimization, minibatch discrimination, and spectral normalization. We also provide a survey of the various applications of GANs across domains. In addition, we review the evaluation metrics utilized to assess the diversity and quality of GAN-produced data. Furthermore, we discuss the challenges and open issues in GANs, including mode collapse, training instability, and ethical considerations. Finally, we provide a glimpse into the future directions of GAN research, including improving scalability, developing new architectures, incorporating domain knowledge, and exploring new applications. Overall, this paper serves as a comprehensive guide to GANs, providing both theoretical and practical insights for researchers and practitioners in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助学医的小白采纳,获得10
1秒前
张丁发布了新的文献求助10
1秒前
长vefvj完成签到,获得积分10
2秒前
车宇完成签到 ,获得积分10
2秒前
文文尔雅发布了新的文献求助10
2秒前
Chao发布了新的文献求助10
3秒前
冰琪完成签到,获得积分10
4秒前
烟雨梦兮完成签到,获得积分10
4秒前
m(_._)m发布了新的文献求助10
4秒前
5秒前
5秒前
sgz666完成签到 ,获得积分10
6秒前
6秒前
烂漫皮皮虾完成签到,获得积分10
7秒前
张丁完成签到,获得积分10
7秒前
852应助浏阳河采纳,获得10
7秒前
7秒前
zzzq应助顺心的怀亦采纳,获得10
7秒前
不安溪灵发布了新的文献求助20
8秒前
8秒前
9秒前
10秒前
zd完成签到,获得积分20
11秒前
李宁完成签到,获得积分10
11秒前
lyzhou发布了新的文献求助20
11秒前
11秒前
12秒前
13秒前
冰琪发布了新的文献求助10
14秒前
绿光之城发布了新的文献求助30
14秒前
14秒前
14秒前
天明发布了新的文献求助10
14秒前
我是老大应助文文尔雅采纳,获得10
15秒前
16秒前
16秒前
16秒前
知性的千秋完成签到,获得积分10
17秒前
eye完成签到,获得积分10
17秒前
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953