阳极
氩
电解
材料科学
惰性气体
电解质
碳纤维
铝
惰性
化学工程
无机化学
冶金
化学
电极
复合数
复合材料
物理化学
有机化学
工程类
作者
Sen Feng,Junjie Zhang,Junli Xu,Mouhamadou A. Diop,Aimin Liu,Fengguo Liu,Zhaowen Wang,Zhongning Shi
标识
DOI:10.1016/j.cej.2023.145010
摘要
The aluminum industry is one of the major causes of CO2 emissions into the atmosphere, mainly caused by carbon anode consumption and the emission of perfluorocarbon gases. Carbon anodes are consumed by anodic reactions in the standard technology. The environmental constraints and the costs associated with the utilization of carbon anodes have, for many decades, led to the look for non-consumable anodes, called “inert anodes,” considered for years to be the future of aluminum production. However, the current research on inert anodes is limited to metal, ceramic, cermet, and gas anodes and remains impotent in solving the difficulties of anode consumption, CO2, and other greenhouse gas emissions. Here, we propose the utilization of argon plasma as an inert anode for aluminum electrolysis. The results from emission spectroscopy analysis and Density Functional Theory (DFT) calculations depict a production of positively charged argon ion (Ar+) at the anode region, which infuses into the electrolyte and reacts electrochemically with the oxy-fluoro aluminate complexes (Al2OF6)2-. For a current ≤ 0.4 A, the oxygen evolution occurs anodically from 2Al2OF62- + 4Ar+ → 4AlF3 + O2 + 4Ar, with no argon consumption. Furthermore, the aluminum is reduced cathodically, and the decomposition reaction is 2Al2O3 → 4Al + 3O2. This innovative approach enables carbon-free aluminum electrolysis, a large-scale reduction in greenhouse gas (GHG) emissions, which can be extended to similar electrolytic industries.
科研通智能强力驱动
Strongly Powered by AbleSci AI