What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective?

非线性系统 联轴节(管道) 区间(图论) 统计 线性回归 计算机科学 计量经济学 人工智能 数学 环境科学 工程类 物理 组合数学 机械工程 量子力学
作者
Ziyi Zhang,Zhaomin Tong,Liting Zhang,Yaolin Liu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:422: 138609-138609 被引量:26
标识
DOI:10.1016/j.jclepro.2023.138609
摘要

Exploring the dominant impact factors and optimal driving threshold of the synergic and trade-off relationship between ecosystem services (ESR) is conducive to the scientific management of the ecosystem. Previous studies seldom take ESR as dependent variables and are primarily based on linear regression models, which is difficult to reflect the real nonlinear ecological process. Based on the spatial mapping for 15 pairs of binary ESR between 6 typical ESs in Fujian Province, this study introduced "glass box" (interpretable and visual) machine learning models to construct a generalizable ESR driving mechanism exploration method system of "ESR spatialization - nonlinear correlation derivation". It visually expounds the nonlinear coupling process between ESR and " natural-socio-economic " variables, and based on this, the dominant factors affecting ESR and their optimal driving threshold interval for the maximized synergy between ESs were determined. The results show that (i) the climate and human traffic activities have the most significant effect on the ESR among the "natural-socio economic" factors. Annual total precipitation, annual sunshine radiation, average annual temperature, distance from railway, and GDP density are the dominant factors affecting the ESR in the sample area. (ii) The correlation between ESR and driving factors is nonlinear. By superimposing the nonlinear response curves of 15 pairs of ESR, the optimal threshold interval of the dominant factor under the guidance of comprehensive synergy maximization in the study area is obtained. (iii) In the comparison of three machine learning models and a linear regression model, the XGBoost model has the best fitting effect, and the machine learning models are all superior to the linear model. The methods and ideas of this study have strong generalization and application and can provide references for research in other regions and scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朴实水壶发布了新的文献求助10
2秒前
典雅碧空应助郑在忙采纳,获得10
3秒前
在水一方应助Mine采纳,获得10
3秒前
阿帕奇发布了新的文献求助10
4秒前
4秒前
4秒前
hmd_150发布了新的文献求助10
5秒前
5秒前
自然小鸭子完成签到,获得积分10
6秒前
NexusExplorer应助小赵爱喝水采纳,获得10
6秒前
7秒前
7秒前
决明lyt发布了新的文献求助10
7秒前
Shicheng完成签到,获得积分10
7秒前
韩永利发布了新的文献求助10
7秒前
shorting发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
许子健发布了新的文献求助10
9秒前
10秒前
jiangjiang发布了新的文献求助10
10秒前
xiaowang发布了新的文献求助10
10秒前
所所应助sunaq采纳,获得10
10秒前
akber123完成签到,获得积分10
11秒前
11秒前
朴实水壶完成签到,获得积分10
11秒前
Pure完成签到 ,获得积分10
11秒前
开心绫发布了新的文献求助10
12秒前
dongli6536发布了新的文献求助10
12秒前
13秒前
温柔傲安发布了新的文献求助10
13秒前
13秒前
13秒前
123nm完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
YK发布了新的文献求助10
14秒前
xiaokuo完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587421
求助须知:如何正确求助?哪些是违规求助? 4003320
关于积分的说明 12393146
捐赠科研通 3679797
什么是DOI,文献DOI怎么找? 2028329
邀请新用户注册赠送积分活动 1061783
科研通“疑难数据库(出版商)”最低求助积分说明 947980