What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective?

非线性系统 联轴节(管道) 区间(图论) 统计 线性回归 计算机科学 计量经济学 人工智能 数学 环境科学 工程类 物理 组合数学 机械工程 量子力学
作者
Ziyi Zhang,Zhaomin Tong,Liting Zhang,Yaolin Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:422: 138609-138609 被引量:8
标识
DOI:10.1016/j.jclepro.2023.138609
摘要

Exploring the dominant impact factors and optimal driving threshold of the synergic and trade-off relationship between ecosystem services (ESR) is conducive to the scientific management of the ecosystem. Previous studies seldom take ESR as dependent variables and are primarily based on linear regression models, which is difficult to reflect the real nonlinear ecological process. Based on the spatial mapping for 15 pairs of binary ESR between 6 typical ESs in Fujian Province, this study introduced "glass box" (interpretable and visual) machine learning models to construct a generalizable ESR driving mechanism exploration method system of "ESR spatialization - nonlinear correlation derivation". It visually expounds the nonlinear coupling process between ESR and " natural-socio-economic " variables, and based on this, the dominant factors affecting ESR and their optimal driving threshold interval for the maximized synergy between ESs were determined. The results show that (i) the climate and human traffic activities have the most significant effect on the ESR among the "natural-socio economic" factors. Annual total precipitation, annual sunshine radiation, average annual temperature, distance from railway, and GDP density are the dominant factors affecting the ESR in the sample area. (ii) The correlation between ESR and driving factors is nonlinear. By superimposing the nonlinear response curves of 15 pairs of ESR, the optimal threshold interval of the dominant factor under the guidance of comprehensive synergy maximization in the study area is obtained. (iii) In the comparison of three machine learning models and a linear regression model, the XGBoost model has the best fitting effect, and the machine learning models are all superior to the linear model. The methods and ideas of this study have strong generalization and application and can provide references for research in other regions and scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助韦威风采纳,获得10
刚刚
刚刚
大七发布了新的文献求助10
刚刚
勤奋白昼完成签到,获得积分10
刚刚
通~发布了新的文献求助10
1秒前
眼角流星完成签到,获得积分10
1秒前
bxj发布了新的文献求助10
1秒前
joker完成签到 ,获得积分10
2秒前
靓丽访枫发布了新的文献求助10
2秒前
乔乔发布了新的文献求助10
2秒前
科研通AI5应助深情凡灵采纳,获得10
4秒前
remedy完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
eric曾发布了新的文献求助10
6秒前
6秒前
嘻嘻嘻完成签到,获得积分10
7秒前
7秒前
carrier_hc完成签到,获得积分10
7秒前
冰安发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
10秒前
在水一方应助桑桑采纳,获得10
11秒前
11秒前
充电宝应助通~采纳,获得10
12秒前
liberation完成签到 ,获得积分10
12秒前
牛牛123完成签到 ,获得积分10
12秒前
13秒前
13秒前
罗实发布了新的文献求助10
14秒前
14秒前
大模型应助LL采纳,获得10
14秒前
33333发布了新的文献求助10
14秒前
自觉秋发布了新的文献求助10
15秒前
啱啱完成签到,获得积分10
15秒前
在水一方应助呆萌的秋天采纳,获得10
15秒前
暴打小猪仔完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762