已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective?

非线性系统 联轴节(管道) 区间(图论) 统计 线性回归 计算机科学 计量经济学 人工智能 数学 环境科学 工程类 物理 组合数学 量子力学 机械工程
作者
Ziyi Zhang,Zhaomin Tong,Liting Zhang,Yaolin Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:422: 138609-138609 被引量:26
标识
DOI:10.1016/j.jclepro.2023.138609
摘要

Exploring the dominant impact factors and optimal driving threshold of the synergic and trade-off relationship between ecosystem services (ESR) is conducive to the scientific management of the ecosystem. Previous studies seldom take ESR as dependent variables and are primarily based on linear regression models, which is difficult to reflect the real nonlinear ecological process. Based on the spatial mapping for 15 pairs of binary ESR between 6 typical ESs in Fujian Province, this study introduced "glass box" (interpretable and visual) machine learning models to construct a generalizable ESR driving mechanism exploration method system of "ESR spatialization - nonlinear correlation derivation". It visually expounds the nonlinear coupling process between ESR and " natural-socio-economic " variables, and based on this, the dominant factors affecting ESR and their optimal driving threshold interval for the maximized synergy between ESs were determined. The results show that (i) the climate and human traffic activities have the most significant effect on the ESR among the "natural-socio economic" factors. Annual total precipitation, annual sunshine radiation, average annual temperature, distance from railway, and GDP density are the dominant factors affecting the ESR in the sample area. (ii) The correlation between ESR and driving factors is nonlinear. By superimposing the nonlinear response curves of 15 pairs of ESR, the optimal threshold interval of the dominant factor under the guidance of comprehensive synergy maximization in the study area is obtained. (iii) In the comparison of three machine learning models and a linear regression model, the XGBoost model has the best fitting effect, and the machine learning models are all superior to the linear model. The methods and ideas of this study have strong generalization and application and can provide references for research in other regions and scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的火车完成签到 ,获得积分10
1秒前
小狗不是抠脚兵完成签到 ,获得积分10
2秒前
ma完成签到,获得积分20
5秒前
yang完成签到 ,获得积分10
7秒前
山山完成签到 ,获得积分10
9秒前
lionel完成签到 ,获得积分10
17秒前
淡淡的无敌完成签到 ,获得积分10
20秒前
欣慰外套完成签到 ,获得积分10
25秒前
26秒前
nxy完成签到 ,获得积分10
27秒前
莱昂纳多的李完成签到,获得积分10
31秒前
wyb发布了新的文献求助30
32秒前
喵喵完成签到,获得积分10
33秒前
我爱科研发布了新的文献求助10
35秒前
Kristopher完成签到 ,获得积分10
35秒前
ma发布了新的文献求助10
35秒前
浮游应助科研通管家采纳,获得10
37秒前
小马甲应助科研通管家采纳,获得30
37秒前
JamesPei应助科研通管家采纳,获得10
37秒前
烟花应助科研通管家采纳,获得10
37秒前
三木完成签到 ,获得积分10
39秒前
我爱科研完成签到,获得积分20
45秒前
45秒前
丰富如南发布了新的文献求助30
48秒前
肖恩完成签到,获得积分10
49秒前
清爽的大树完成签到,获得积分10
50秒前
Tommy_Ali发布了新的文献求助10
51秒前
51秒前
blacksea发布了新的文献求助10
52秒前
可爱的函函应助fangfang采纳,获得10
52秒前
wx2360ouc完成签到 ,获得积分10
56秒前
爱学习完成签到 ,获得积分10
57秒前
寒霜扬名完成签到 ,获得积分10
59秒前
丰富如南完成签到,获得积分10
1分钟前
apckkk完成签到 ,获得积分10
1分钟前
充电宝应助活泼的海豚采纳,获得10
1分钟前
李健完成签到 ,获得积分10
1分钟前
blacksea完成签到,获得积分20
1分钟前
Hiram完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290974
求助须知:如何正确求助?哪些是违规求助? 4442178
关于积分的说明 13829448
捐赠科研通 4325091
什么是DOI,文献DOI怎么找? 2373956
邀请新用户注册赠送积分活动 1369349
关于科研通互助平台的介绍 1333483