What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective?

非线性系统 联轴节(管道) 区间(图论) 统计 线性回归 计算机科学 计量经济学 人工智能 数学 环境科学 工程类 物理 组合数学 量子力学 机械工程
作者
Ziyi Zhang,Zhaomin Tong,Liting Zhang,Yaolin Liu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:422: 138609-138609 被引量:26
标识
DOI:10.1016/j.jclepro.2023.138609
摘要

Exploring the dominant impact factors and optimal driving threshold of the synergic and trade-off relationship between ecosystem services (ESR) is conducive to the scientific management of the ecosystem. Previous studies seldom take ESR as dependent variables and are primarily based on linear regression models, which is difficult to reflect the real nonlinear ecological process. Based on the spatial mapping for 15 pairs of binary ESR between 6 typical ESs in Fujian Province, this study introduced "glass box" (interpretable and visual) machine learning models to construct a generalizable ESR driving mechanism exploration method system of "ESR spatialization - nonlinear correlation derivation". It visually expounds the nonlinear coupling process between ESR and " natural-socio-economic " variables, and based on this, the dominant factors affecting ESR and their optimal driving threshold interval for the maximized synergy between ESs were determined. The results show that (i) the climate and human traffic activities have the most significant effect on the ESR among the "natural-socio economic" factors. Annual total precipitation, annual sunshine radiation, average annual temperature, distance from railway, and GDP density are the dominant factors affecting the ESR in the sample area. (ii) The correlation between ESR and driving factors is nonlinear. By superimposing the nonlinear response curves of 15 pairs of ESR, the optimal threshold interval of the dominant factor under the guidance of comprehensive synergy maximization in the study area is obtained. (iii) In the comparison of three machine learning models and a linear regression model, the XGBoost model has the best fitting effect, and the machine learning models are all superior to the linear model. The methods and ideas of this study have strong generalization and application and can provide references for research in other regions and scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
辣味锅包肉完成签到,获得积分10
1秒前
兴奋千兰发布了新的文献求助10
1秒前
隐形曼青应助111111采纳,获得10
3秒前
3秒前
dara发布了新的文献求助10
4秒前
hello发布了新的文献求助10
5秒前
唐Doctor发布了新的文献求助10
5秒前
Akim应助小唐尼采纳,获得30
5秒前
醉熏的鑫关注了科研通微信公众号
6秒前
无花果应助hua采纳,获得10
6秒前
小情绪完成签到 ,获得积分10
6秒前
科研通AI2S应助Kris采纳,获得10
11秒前
12秒前
彭于晏应助儒雅的梦芝采纳,获得10
13秒前
CodeCraft应助哈利波特采纳,获得10
14秒前
李爱国应助唐Doctor采纳,获得10
16秒前
17秒前
17秒前
18秒前
19秒前
anna发布了新的文献求助10
19秒前
21秒前
22秒前
杪杪发布了新的文献求助10
22秒前
24秒前
hua发布了新的文献求助10
24秒前
小仙丹完成签到,获得积分20
24秒前
25秒前
锦城纯契完成签到 ,获得积分10
25秒前
feng1235发布了新的文献求助20
26秒前
gxzsdf完成签到 ,获得积分10
27秒前
GGBOND发布了新的文献求助10
27秒前
知性的剑身完成签到,获得积分10
27秒前
Dalia完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
萨日呼发布了新的文献求助10
30秒前
史念薇完成签到,获得积分10
31秒前
传奇3应助晓晓采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105