数学
紧凑空间
索波列夫空间
霍尔德条件
有界函数
数学分析
巴拿赫空间
多项式的
收缩原理
一致连续性
班级(哲学)
纯数学
不动点定理
度量空间
人工智能
计算机科学
标识
DOI:10.1142/s0219493723500491
摘要
In this paper, we first prove a uniform contraction principle for verifying the uniform large deviation principles of locally Hölder continuous maps in Banach spaces. We then show the local Hölder continuity of the solutions of a class of fractional parabolic equations with polynomial drift of any order defined on [Formula: see text]. We finally establish the large deviation principle of the fractional stochastic equations uniformly with respect to bounded initial data, despite the solution operators are not compact due to the non-compactness of Sobolev embeddings on unbounded domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI