Land Surface Eco-Environmental Situation Index (LSEESI) Derived From Remote Sensing

城市群 长江 三角洲 环境科学 中国 遥感 索引(排版) 可持续发展 土地利用 植被(病理学) 三角洲 自然地理学 地理 计算机科学 生态学 医学 考古 病理 航空航天工程 万维网 生物 工程类
作者
Xin Hang,Yachun Li,Yun Cao,Shihua Zhu,Xiuzhen Han,Xinyi Li,Liangxiao Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2023.3311469
摘要

Efficient and accurate monitoring of land surface eco-environmental situation (LSEES) is critical to promoting the sustainable development of global society. This study utilizes satellite data from EOS/MODIS to derive the land surface eco-environmental index (LSEESI) through the covariance-based principal component analysis method. Four strategies are used to evaluate the performance of this methodology. The stability, reasonability, comprehensive representation, and regional adaptability of this model are approved. LSEESI is also compared with the remote sensing ecological index (RSEI) and shows that LSEESI better indicates the LSEES (R 2 = 0.674 for LSEESI, 0.437 for RSEI). Application of the LSEESI model in Yangtze River Delta during 2001-2021 shows the conclusions as follows: 1) Overall, the LSEES in Yangtze River Delta is stable or improving, and the annual average LSEESI increased from 0.572 to 0.593. 2) There were significant spatial differences in LSEES in Yangtze River Delta. Areas with relatively poor LSEES were mainly in Suzhou-Wuxi-Changzhou urban agglomeration, Hangzhou-Jiaxing-Ningbo urban agglomeration, and Shanghai. Regions with deteriorating LSEES were also mainly concentrated in the above urban agglomerations around Lake Taihu. 3) The contribution of temperature, precipitation, and NTL to LSEES was 0.07, 0.38, and 0.55, respectively, suggesting that LSEES change in Yangtze River Delta in recent 21 years might have been influenced primarily by human activity, with only some parts of Anhui Province affected mainly by climate change. This study demonstrated that the proposed LSEESI model can effectively monitor and quantitatively evaluate LSEES change, and provide the information necessary for monitoring and managing eco-environmental systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言午完成签到,获得积分10
1秒前
迢迢笙箫给迢迢笙箫的求助进行了留言
1秒前
完美世界应助luodaxia采纳,获得30
2秒前
科研通AI2S应助从容的慕山采纳,获得10
2秒前
Levi_Liang完成签到,获得积分10
3秒前
4秒前
情怀应助茶馆采纳,获得10
4秒前
7秒前
汉堡包应助德尔塔捱斯采纳,获得10
7秒前
上官若男应助sjf采纳,获得10
8秒前
SciGPT应助dsaifjs采纳,获得10
9秒前
呆萌孤容发布了新的文献求助10
11秒前
11秒前
smile~发布了新的文献求助10
12秒前
14秒前
14秒前
领导范儿应助达瓦里氏采纳,获得10
14秒前
乐乐应助缓缓矛盾体采纳,获得10
15秒前
乐乐应助evy采纳,获得10
16秒前
16秒前
16秒前
小蘑菇应助火星上问柳采纳,获得20
17秒前
practice发布了新的文献求助10
17秒前
Tracy发布了新的文献求助10
18秒前
18秒前
leslie发布了新的文献求助10
19秒前
达奈林完成签到,获得积分20
20秒前
欢呼忆丹发布了新的文献求助10
20秒前
21秒前
21秒前
8R60d8应助喵总采纳,获得10
21秒前
xh发布了新的文献求助10
22秒前
12发布了新的文献求助10
23秒前
23秒前
等待的士晋完成签到 ,获得积分10
23秒前
23秒前
德尔塔捱斯完成签到,获得积分10
23秒前
25秒前
科研通AI2S应助从容的慕山采纳,获得10
25秒前
smile~完成签到,获得积分20
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291