Annotating metabolite mass spectra with domain-inspired chemical formula transformers

代谢组学 代谢物 计算机科学 串联质谱法 计算生物学 质谱 下部结构 生物系统 化学 人工智能 模式识别(心理学) 质谱法 生物信息学 生物 生物化学 色谱法 结构工程 工程类
作者
Samuel Goldman,Jeremy Wohlwend,Martin Stražar,Guy Haroush,Ramnik J. Xavier,Connor W. Coley
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (9): 965-979 被引量:24
标识
DOI:10.1038/s42256-023-00708-3
摘要

Metabolomics studies have identified small molecules that mediate cell signaling, competition and disease pathology, in part due to large-scale community efforts to measure tandem mass spectra for thousands of metabolite standards. Nevertheless, the majority of spectra observed in clinical samples cannot be unambiguously matched to known structures. Deep learning approaches to small-molecule structure elucidation have surprisingly failed to rival classical statistical methods, which we hypothesize is due to the lack of in-domain knowledge incorporated into current neural network architectures. Here we introduce a neural network-driven workflow for untargeted metabolomics, Metabolite Inference with Spectrum Transformers (MIST), to annotate tandem mass spectra peaks with chemical structures. Unlike existing approaches, MIST incorporates domain insights into its architecture by encoding peaks with their chemical formula representations, implicitly featurizing pairwise neutral losses and training the network to additionally predict substructure fragments. MIST performs favorably compared with both standard neural architectures and the state-of-the-art kernel method on the task of fingerprint prediction for over 70% of metabolite standards and retrieves 66% of metabolites with equal or improved accuracy, with 29% strictly better. We further demonstrate the utility of MIST by suggesting potential dipeptide and alkaloid structures for differentially abundant spectra found in an inflammatory bowel disease patient cohort. Tandem mass spectroscopy is a useful tool to identify metabolites but is limited by the capability of computational methods to annotate peaks with chemical structures when spectra are dissimilar to previously observed spectra. Goldman and colleagues use a transformer-based method to annotate chemical structure fragments, thereby incorporating domain insights into its architecture, and to simultaneously predict the structure of the metabolite and its fragments from the spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿完成签到 ,获得积分10
1秒前
一程完成签到 ,获得积分10
2秒前
2秒前
Henry完成签到,获得积分10
3秒前
阿熙娃完成签到 ,获得积分10
5秒前
友好的钢笔完成签到 ,获得积分10
5秒前
张张张完成签到 ,获得积分10
5秒前
灰灰喵完成签到 ,获得积分10
6秒前
沉静的清涟完成签到,获得积分10
7秒前
宇宇宇c完成签到,获得积分10
7秒前
星星完成签到,获得积分10
9秒前
科研通AI5应助hihi采纳,获得10
10秒前
水星完成签到 ,获得积分10
11秒前
机智的飞鸟完成签到 ,获得积分10
12秒前
正直的煎饼完成签到,获得积分10
13秒前
guangyu完成签到,获得积分10
13秒前
windmill完成签到,获得积分10
13秒前
科研通AI5应助开朗灵寒采纳,获得10
15秒前
MIST完成签到,获得积分10
16秒前
revew666完成签到,获得积分10
16秒前
huhu完成签到 ,获得积分10
16秒前
醉熏的千柳完成签到 ,获得积分10
16秒前
17秒前
拼命奔跑完成签到 ,获得积分10
17秒前
123456qi完成签到,获得积分10
18秒前
YANGMJ完成签到,获得积分10
18秒前
Tia完成签到 ,获得积分10
19秒前
彗星入梦完成签到 ,获得积分10
19秒前
喜悦香萱完成签到 ,获得积分10
19秒前
糊涂的服饰完成签到,获得积分10
20秒前
白枫完成签到 ,获得积分10
23秒前
shepherd完成签到,获得积分10
23秒前
23秒前
浅浅殇完成签到,获得积分10
23秒前
Ec_w完成签到 ,获得积分10
25秒前
科研通AI2S应助oral采纳,获得10
26秒前
27秒前
淡然寒蕾完成签到,获得积分10
28秒前
28秒前
977发布了新的文献求助10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944