Electrochemistry-Induced Direct Deposition of Nanoscale Thin Zeolitic Imidazolate Framework-8 Films on Insulator Substrates

材料科学 薄膜 电极 绝缘体(电) 电化学 纳米技术 沸石咪唑盐骨架 沉积(地质) 化学工程 光电子学 金属有机骨架 化学 古生物学 有机化学 物理化学 吸附 沉积物 工程类 生物
作者
Takashi Ito,Samantha G. Jenkins,Söenke Seifert,Ahmet Uysal
出处
期刊:Crystal Growth & Design [American Chemical Society]
卷期号:23 (9): 6369-6377
标识
DOI:10.1021/acs.cgd.3c00329
摘要

Electrochemical approaches have been explored as controlled means to prepare thin films of metal–organic frameworks (MOFs) on electrodes but have rarely been used to form insulator films on insulator surfaces. Herein, we report an electrochemistry-based approach to direct deposition of a thin film of zeolitic imidazolate framework-8 (ZIF-8) onto an insulator surface. The film deposition was induced by a cathodic reaction at an electrode that was placed above the insulator with a separation of ≈100 μm in a methanol solution containing ZnCl2 and 2-methylimidizole. The effects of the electrode and insulator material, applied potential, electrode–substrate distance, deposition time, and the number of deposition cycles were systematically investigated to gain insight into the deposition mechanism. The results of these measurements were consistent with a hypothesized mechanism involving cathodic base generation at the working electrode for ligand deprotonation, formation of intermediate species, their diffusion toward the substrate, and the formation of ZIF-8 on the substrate. Interestingly, the size, shape, and position of the film on the substrate replicated those of the working electrode, showing the applicability of this approach to the patterned deposition of a ZIF-8 film. In addition, film thickness could be easily controlled in the range of tens to hundreds of nanometers by adjusting the potential application conditions. This electrochemistry-induced method will provide a simple means for the patterned formation of a MOF film of controlled thickness on an insulator without metal precoating and thus will open the possibility of designing unique devices for various applications including chemical sensing and separations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WMT完成签到 ,获得积分10
1秒前
山有扶苏完成签到,获得积分10
3秒前
fyy完成签到 ,获得积分10
3秒前
kento发布了新的文献求助10
3秒前
3秒前
4秒前
王梦秋发布了新的文献求助10
4秒前
清晨发布了新的文献求助10
4秒前
4秒前
白青完成签到,获得积分10
4秒前
5秒前
粗暴的又槐完成签到,获得积分20
5秒前
Captainhana发布了新的文献求助10
5秒前
6秒前
yyy完成签到 ,获得积分10
7秒前
8秒前
香菜完成签到,获得积分10
8秒前
小二郎应助lhy采纳,获得10
9秒前
细小完成签到,获得积分10
10秒前
FashionBoy应助zimo采纳,获得10
10秒前
10秒前
今后应助kid采纳,获得10
11秒前
11秒前
Brown完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
xiaoliu完成签到,获得积分10
13秒前
13秒前
14秒前
dglyl发布了新的文献求助10
14秒前
科研通AI6应助lc采纳,获得10
15秒前
16秒前
自觉的丹珍完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
崽崽发布了新的文献求助10
19秒前
无花果应助背后的广山采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858