A Real-Time Bearing Fault Diagnosis Model Based on Siamese Convolutional Autoencoder in Industrial Internet of Things

自编码 计算机科学 方位(导航) 断层(地质) 人工智能 特征提取 深度学习 卷积神经网络 模式识别(心理学) 数据挖掘 机器学习 地震学 地质学
作者
He-xuan Hu,Chengcheng Cao,Qiang Hu,Ye Zhang,Zhen-Zhou Lin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 3820-3831
标识
DOI:10.1109/jiot.2023.3307127
摘要

The extreme environment refers to the abnormal temperature, pressure or vibration in the environment within a certain period of time, which will cause the fault of bearing equipment. Bearing fault diagnosis model can accurately identify the health status of bearing equipment, which can deal with the influence of extreme environments on the normal operation of bearings in a timely manner. However, current bearing fault diagnosis models have the following challenge: the sample size of faulty data is too small, which makes the parameters in the bearing fault diagnosis model unable to be effectively learned. Therefore, in order to solve the above issue in the field of bearing fault diagnosis, we draw on the siamese network and convolutional autoencoder, and propose a real-time bearing fault diagnosis model based on siamese convolutional autoencoder (RBFDSCA) in this work. Firstly, we use an Industrial Internet of Things (IIoT) platform to collect, store and analyze bearing data. Secondly, to cope with the challenge of the small sample size of faulty data, RBFDSCA model constructs a siamese convolutional autoencoder. The siamese convolutional autoencoder contains a positive feature extraction network, a negative feature extraction network, and a prediction network. The four evaluation metrics of RBFDSCA model on the real bearing dataset are 0.9638, 0.9640, 0.9641 and 0.9639 respectively, which verifies its excellent performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助Fx采纳,获得10
刚刚
Tesia完成签到,获得积分10
1秒前
淡然的小霸王完成签到,获得积分10
1秒前
2秒前
2秒前
小马发布了新的文献求助10
3秒前
风中的以山完成签到,获得积分10
3秒前
3秒前
红绿蓝完成签到 ,获得积分10
3秒前
子车茗应助gt采纳,获得20
3秒前
科研通AI6应助gt采纳,获得10
3秒前
3秒前
Jared应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
嘿嘿应助科研通管家采纳,获得30
3秒前
Stella应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
风吹麦田应助科研通管家采纳,获得80
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Stella应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
Frank应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
Stella应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462