A Real-Time Bearing Fault Diagnosis Model Based on Siamese Convolutional Autoencoder in Industrial Internet of Things

自编码 计算机科学 方位(导航) 断层(地质) 人工智能 特征提取 深度学习 卷积神经网络 模式识别(心理学) 数据挖掘 机器学习 地震学 地质学
作者
He-xuan Hu,Chengcheng Cao,Qiang Hu,Ye Zhang,Zhen-Zhou Lin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 3820-3831
标识
DOI:10.1109/jiot.2023.3307127
摘要

The extreme environment refers to the abnormal temperature, pressure or vibration in the environment within a certain period of time, which will cause the fault of bearing equipment. Bearing fault diagnosis model can accurately identify the health status of bearing equipment, which can deal with the influence of extreme environments on the normal operation of bearings in a timely manner. However, current bearing fault diagnosis models have the following challenge: the sample size of faulty data is too small, which makes the parameters in the bearing fault diagnosis model unable to be effectively learned. Therefore, in order to solve the above issue in the field of bearing fault diagnosis, we draw on the siamese network and convolutional autoencoder, and propose a real-time bearing fault diagnosis model based on siamese convolutional autoencoder (RBFDSCA) in this work. Firstly, we use an Industrial Internet of Things (IIoT) platform to collect, store and analyze bearing data. Secondly, to cope with the challenge of the small sample size of faulty data, RBFDSCA model constructs a siamese convolutional autoencoder. The siamese convolutional autoencoder contains a positive feature extraction network, a negative feature extraction network, and a prediction network. The four evaluation metrics of RBFDSCA model on the real bearing dataset are 0.9638, 0.9640, 0.9641 and 0.9639 respectively, which verifies its excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得50
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
wop111应助科研通管家采纳,获得20
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Song完成签到,获得积分10
1秒前
思源应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得30
2秒前
田様应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
Li chun sheng发布了新的文献求助10
3秒前
3秒前
medlive2020发布了新的文献求助10
4秒前
4秒前
天天快乐应助Shaw采纳,获得10
5秒前
charon发布了新的文献求助10
5秒前
尔东发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269