Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain–machine interfaces

计算机科学 任务(项目管理) 前额叶皮质 感觉系统 脑-机接口 解码方法 人机交互 语音识别 认知心理学 神经科学 认知 脑电图 心理学 电信 管理 经济
作者
Jieyuan Tan,Xiang Zhang,Shenghui Wu,Zhiwei Song,Shuhang Chen,Yifan Huang,Yiwen Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056035-056035 被引量:4
标识
DOI:10.1088/1741-2552/ad017d
摘要

Abstract Objectives . Coadaptive brain–machine interfaces (BMIs) allow subjects and external devices to adapt to each other during the closed-loop control, which provides a promising solution for paralyzed individuals. Previous studies have focused on either improving sensory feedback to facilitate subject learning or developing adaptive algorithms to maintain stable decoder performance. In this work, we aim to design an efficient coadaptive BMI framework which not only facilitates the learning of subjects on new tasks with designed sensory feedback, but also improves decoders’ learning ability by extracting sensory feedback-induced evaluation information. Approach . We designed dynamic audio feedback during the trial according to the subjects’ performance when they were trained to learn a new behavioral task. We compared the learning performance of two groups of Sprague Dawley rats, one with and the other without the designed audio feedback to show whether this audio feedback could facilitate the subjects’ learning. Compared with the traditional closed-loop in BMI systems, an additional closed-loop involving medial prefrontal cortex (mPFC) activity was introduced into the coadaptive framework. The neural dynamics of audio-induced mPFC activity was analyzed to investigate whether a significant neural response could be triggered. This audio-induced response was then translated into reward expectation information to guide the learning of decoders on a new task. The multiday decoding performance of the decoders with and without audio-induced reward expectation was compared to investigate whether the extracted information could accelerate decoders to learn a new task. Main results . The behavior performance comparison showed that the average days for rats to achieve 80% well-trained behavioral performance was improved by 26.4% after introducing the designed audio feedback sequence. The analysis of neural dynamics showed that a significant neural response of mPFC activity could be elicited by the audio feedback and the visualization of audio-induced neural patterns was emerged and accompanied by the behavioral improvement of subjects. The multiday decoding performance comparison showed that the decoder taking the reward expectation information could achieve faster task learning by 33.8% on average across subjects. Significance . This study demonstrates that the designed audio feedback could improve the learning of subjects and the mPFC activity induced by audio feedback can be utilized to improve the decoder’s learning efficiency on new tasks. The coadaptive framework involving mPFC dynamics in the closed-loop interaction can advance the BMIs into a more adaptive and efficient system with learning ability on new tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
欧小仙发布了新的文献求助10
1秒前
Honeydukes应助舒芙蕾采纳,获得10
1秒前
2秒前
潇潇雨歇发布了新的文献求助10
4秒前
Tzzl0226发布了新的文献求助10
4秒前
丘比特应助11采纳,获得10
4秒前
杉杉发布了新的文献求助10
7秒前
多情夜阑完成签到,获得积分10
7秒前
顾矜应助JY采纳,获得10
8秒前
行者孙完成签到,获得积分20
9秒前
9秒前
kimxia完成签到,获得积分10
9秒前
11秒前
11秒前
星威完成签到,获得积分10
11秒前
bbh完成签到,获得积分10
13秒前
大海的DOI发布了新的文献求助10
13秒前
15秒前
李健的小迷弟应助Zhao采纳,获得10
15秒前
tayslay发布了新的文献求助10
15秒前
15秒前
行者孙发布了新的文献求助30
16秒前
苏卿应助pbj采纳,获得10
16秒前
科研通AI5应助pbj采纳,获得10
16秒前
小马发布了新的文献求助10
16秒前
gqz完成签到,获得积分10
17秒前
17秒前
科研通AI5应助蛋黄派采纳,获得30
17秒前
17秒前
17秒前
思源应助初见月采纳,获得10
18秒前
18秒前
19秒前
研友_VZG7GZ应助tayslay采纳,获得10
20秒前
原xiao发布了新的文献求助10
21秒前
21秒前
21秒前
LEO发布了新的文献求助10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496374
求助须知:如何正确求助?哪些是违规求助? 3081314
关于积分的说明 9166581
捐赠科研通 2774132
什么是DOI,文献DOI怎么找? 1522339
邀请新用户注册赠送积分活动 705861
科研通“疑难数据库(出版商)”最低求助积分说明 703123