亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

E-commerce Search via Content Collaborative Graph Neural Network

计算机科学 可扩展性 图形 注意力网络 反事实思维 机器学习 人工神经网络 人工智能 理论计算机科学 数据挖掘 情报检索 数据库 认识论 哲学
作者
Guipeng Xv,Chen Lin,Wanxian Guan,Jinping Gou,Xubin Li,Hongbo Deng,Jian Xu,Bo Zheng
标识
DOI:10.1145/3580305.3599320
摘要

Recently, many E-commerce search models are based on Graph Neural Networks (GNNs). Despite their promising performances, they are (1) lacking proper semantic representation of product contents; (2) less efficient for industry-scale graphs; and (3) less accurate on long-tail queries and cold-start products. To address these problems simultaneously, this paper proposes CC-GNN, a novel Content Collaborative Graph Neural Network. Firstly, CC-GNN enables content phrases to participate explicitly in graph propagation to capture the proper meaning of phrases and semantic drifts. Secondly, CC-GNN presents several efforts towards a more scalable graph learning framework, including efficient graph construction, MetaPath-guided Message Passing, and Difficulty-aware Representation Perturbation for graph contrastive learning. Furthermore, CC-GNN adopts Counterfactual Data Supplement at both supervised and contrastive learning to resolve the long-tail/cold-start problems. Extensive experiments on a real E-commerce dataset of 100-million-scale nodes show that CC-GNN produces significant improvements over existing methods (i.e., more than 10% improvements in terms of several key evaluation metrics for overall, long-tail queries and cold-start products) while reducing computational complexity. The proposed components of CC-GNN can be applied to other models for search and recommendation tasks. Experiments on a public dataset show that applying the proposed components can improve the performance of different recommendation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的钥匙完成签到,获得积分10
2秒前
3秒前
yy完成签到 ,获得积分10
5秒前
9秒前
科目三应助科研通管家采纳,获得10
10秒前
ho应助科研通管家采纳,获得10
10秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
wangxinling发布了新的文献求助10
10秒前
11秒前
16秒前
笼中鸟发布了新的文献求助10
17秒前
xxfsx应助wangxinling采纳,获得10
21秒前
科研通AI6应助wangxinling采纳,获得10
21秒前
无花果应助wangxinling采纳,获得10
21秒前
爆米花应助wangxinling采纳,获得10
21秒前
大个应助wangxinling采纳,获得10
21秒前
科研通AI6应助wangxinling采纳,获得10
21秒前
枯叶灬风发布了新的文献求助10
22秒前
23秒前
511完成签到 ,获得积分10
27秒前
科研通AI6应助wangxinling采纳,获得10
27秒前
嘻嘻哈哈应助wangxinling采纳,获得10
27秒前
嘻嘻哈哈应助wangxinling采纳,获得10
27秒前
er123721应助wangxinling采纳,获得10
27秒前
科研通AI6应助wangxinling采纳,获得10
27秒前
天天快乐应助wangxinling采纳,获得10
28秒前
科研通AI6应助wangxinling采纳,获得10
28秒前
顾矜应助wangxinling采纳,获得30
28秒前
科研通AI6应助wangxinling采纳,获得10
28秒前
深情安青应助wangxinling采纳,获得10
28秒前
ceeray23发布了新的文献求助20
30秒前
32秒前
32秒前
34秒前
guoyufan发布了新的文献求助10
35秒前
37秒前
李健的小迷弟应助rumi0591采纳,获得10
42秒前
43秒前
ding应助guoyufan采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376293
求助须知:如何正确求助?哪些是违规求助? 4501376
关于积分的说明 14012859
捐赠科研通 4409135
什么是DOI,文献DOI怎么找? 2422067
邀请新用户注册赠送积分活动 1414854
关于科研通互助平台的介绍 1391729