E-commerce Search via Content Collaborative Graph Neural Network

计算机科学 可扩展性 图形 注意力网络 反事实思维 机器学习 人工神经网络 人工智能 理论计算机科学 数据挖掘 情报检索 数据库 认识论 哲学
作者
Guipeng Xv,Chen Lin,Wanxian Guan,Jinping Gou,Xubin Li,Hongbo Deng,Jian Xu,Bo Zheng
标识
DOI:10.1145/3580305.3599320
摘要

Recently, many E-commerce search models are based on Graph Neural Networks (GNNs). Despite their promising performances, they are (1) lacking proper semantic representation of product contents; (2) less efficient for industry-scale graphs; and (3) less accurate on long-tail queries and cold-start products. To address these problems simultaneously, this paper proposes CC-GNN, a novel Content Collaborative Graph Neural Network. Firstly, CC-GNN enables content phrases to participate explicitly in graph propagation to capture the proper meaning of phrases and semantic drifts. Secondly, CC-GNN presents several efforts towards a more scalable graph learning framework, including efficient graph construction, MetaPath-guided Message Passing, and Difficulty-aware Representation Perturbation for graph contrastive learning. Furthermore, CC-GNN adopts Counterfactual Data Supplement at both supervised and contrastive learning to resolve the long-tail/cold-start problems. Extensive experiments on a real E-commerce dataset of 100-million-scale nodes show that CC-GNN produces significant improvements over existing methods (i.e., more than 10% improvements in terms of several key evaluation metrics for overall, long-tail queries and cold-start products) while reducing computational complexity. The proposed components of CC-GNN can be applied to other models for search and recommendation tasks. Experiments on a public dataset show that applying the proposed components can improve the performance of different recommendation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aaa应助shelley采纳,获得10
1秒前
zy发布了新的文献求助10
2秒前
慕青应助附油采纳,获得10
2秒前
CD完成签到,获得积分10
2秒前
hahhh7发布了新的文献求助10
2秒前
马铃薯发布了新的文献求助10
2秒前
方法发布了新的文献求助10
3秒前
三莫莫莫完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
钮傲白完成签到,获得积分10
4秒前
汉堡包应助万默采纳,获得10
5秒前
5秒前
光速2000完成签到,获得积分10
5秒前
科研巨恼完成签到,获得积分10
5秒前
5秒前
双子玖兰莒完成签到,获得积分10
5秒前
用户3900完成签到,获得积分10
5秒前
Hello应助细心的紫菱采纳,获得10
5秒前
5秒前
5秒前
Nora发布了新的文献求助30
5秒前
6秒前
6秒前
Daria发布了新的文献求助10
7秒前
酷波er应助爱笑小笼包采纳,获得10
7秒前
vizi应助爱笑小笼包采纳,获得10
7秒前
Betty完成签到,获得积分10
7秒前
8秒前
浮游应助keyring采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
鸣笛应助科研通管家采纳,获得20
8秒前
科目三应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4555627
求助须知:如何正确求助?哪些是违规求助? 3983955
关于积分的说明 12334119
捐赠科研通 3654003
什么是DOI,文献DOI怎么找? 2012868
邀请新用户注册赠送积分活动 1047845
科研通“疑难数据库(出版商)”最低求助积分说明 936281