E-commerce Search via Content Collaborative Graph Neural Network

计算机科学 可扩展性 图形 注意力网络 反事实思维 机器学习 人工神经网络 人工智能 理论计算机科学 数据挖掘 情报检索 数据库 认识论 哲学
作者
Guipeng Xv,Chen Lin,Wanxian Guan,Jinping Gou,Xubin Li,Hongbo Deng,Jian Xu,Bo Zheng
标识
DOI:10.1145/3580305.3599320
摘要

Recently, many E-commerce search models are based on Graph Neural Networks (GNNs). Despite their promising performances, they are (1) lacking proper semantic representation of product contents; (2) less efficient for industry-scale graphs; and (3) less accurate on long-tail queries and cold-start products. To address these problems simultaneously, this paper proposes CC-GNN, a novel Content Collaborative Graph Neural Network. Firstly, CC-GNN enables content phrases to participate explicitly in graph propagation to capture the proper meaning of phrases and semantic drifts. Secondly, CC-GNN presents several efforts towards a more scalable graph learning framework, including efficient graph construction, MetaPath-guided Message Passing, and Difficulty-aware Representation Perturbation for graph contrastive learning. Furthermore, CC-GNN adopts Counterfactual Data Supplement at both supervised and contrastive learning to resolve the long-tail/cold-start problems. Extensive experiments on a real E-commerce dataset of 100-million-scale nodes show that CC-GNN produces significant improvements over existing methods (i.e., more than 10% improvements in terms of several key evaluation metrics for overall, long-tail queries and cold-start products) while reducing computational complexity. The proposed components of CC-GNN can be applied to other models for search and recommendation tasks. Experiments on a public dataset show that applying the proposed components can improve the performance of different recommendation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssssxr发布了新的文献求助10
刚刚
1秒前
August发布了新的文献求助10
1秒前
2秒前
领导范儿应助学分采纳,获得30
2秒前
2秒前
Ava应助shen采纳,获得10
4秒前
4秒前
5秒前
HQQ完成签到,获得积分10
5秒前
SQDHZJ发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
无花果应助尊敬的飞槐采纳,获得10
7秒前
休休发布了新的文献求助20
7秒前
碧蓝巧荷完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
聪慧小霜应助ssssxr采纳,获得10
10秒前
头号玩家发布了新的文献求助10
11秒前
大个应助xubee采纳,获得10
12秒前
13秒前
SQDHZJ完成签到,获得积分10
13秒前
yokliang发布了新的文献求助10
15秒前
轻松的惜芹应助聪明面包采纳,获得200
17秒前
17秒前
fanmo完成签到 ,获得积分0
18秒前
陈美净发布了新的文献求助10
18秒前
jh完成签到,获得积分10
19秒前
August完成签到,获得积分10
19秒前
22秒前
小张发布了新的文献求助10
22秒前
22秒前
LY发布了新的文献求助10
23秒前
个性的冬卉完成签到,获得积分10
23秒前
传奇3应助Gaara0504采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976210
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11203088
捐赠科研通 3256965
什么是DOI,文献DOI怎么找? 1798570
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516