已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Mobile App That Addresses Interpretability Challenges in Machine Learning–Based Diabetes Predictions: Survey-Based User Study

可解释性 移动应用程序 计算机科学 机器学习 糖尿病 人工智能 人机交互 数据科学 万维网 医学 内分泌学
作者
Rasha Hendawi,Juan Li,Souradip Roy
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e50328-e50328
标识
DOI:10.2196/50328
摘要

Machine learning approaches, including deep learning, have demonstrated remarkable effectiveness in the diagnosis and prediction of diabetes. However, these approaches often operate as opaque black boxes, leaving health care providers in the dark about the reasoning behind predictions. This opacity poses a barrier to the widespread adoption of machine learning in diabetes and health care, leading to confusion and eroding trust.This study aimed to address this critical issue by developing and evaluating an explainable artificial intelligence (AI) platform, XAI4Diabetes, designed to empower health care professionals with a clear understanding of AI-generated predictions and recommendations for diabetes care. XAI4Diabetes not only delivers diabetes risk predictions but also furnishes easily interpretable explanations for complex machine learning models and their outcomes.XAI4Diabetes features a versatile multimodule explanation framework that leverages machine learning, knowledge graphs, and ontologies. The platform comprises the following four essential modules: (1) knowledge base, (2) knowledge matching, (3) prediction, and (4) interpretation. By harnessing AI techniques, XAI4Diabetes forecasts diabetes risk and provides valuable insights into the prediction process and outcomes. A structured, survey-based user study assessed the app's usability and influence on participants' comprehension of machine learning predictions in real-world patient scenarios.A prototype mobile app was meticulously developed and subjected to thorough usability studies and satisfaction surveys. The evaluation study findings underscore the substantial improvement in medical professionals' comprehension of key aspects, including the (1) diabetes prediction process, (2) data sets used for model training, (3) data features used, and (4) relative significance of different features in prediction outcomes. Most participants reported heightened understanding of and trust in AI predictions following their use of XAI4Diabetes. The satisfaction survey results further revealed a high level of overall user satisfaction with the tool.This study introduces XAI4Diabetes, a versatile multi-model explainable prediction platform tailored to diabetes care. By enabling transparent diabetes risk predictions and delivering interpretable insights, XAI4Diabetes empowers health care professionals to comprehend the AI-driven decision-making process, thereby fostering transparency and trust. These advancements hold the potential to mitigate biases and facilitate the broader integration of AI in diabetes care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助lizibelle采纳,获得10
5秒前
10秒前
Wish完成签到,获得积分10
14秒前
zz发布了新的文献求助10
15秒前
kk发布了新的文献求助10
27秒前
liu发布了新的文献求助10
27秒前
27秒前
28秒前
lizibelle完成签到,获得积分20
29秒前
旭晓完成签到 ,获得积分10
29秒前
31秒前
zsp发布了新的文献求助10
31秒前
胡萝卜发布了新的文献求助10
33秒前
35秒前
liu完成签到,获得积分10
37秒前
37秒前
sa完成签到 ,获得积分10
40秒前
zsp完成签到,获得积分10
40秒前
zz完成签到,获得积分10
41秒前
44秒前
三泥完成签到,获得积分10
46秒前
何必呢完成签到,获得积分10
50秒前
田様应助胡萝卜采纳,获得10
50秒前
51秒前
机灵柚子应助三泥采纳,获得20
52秒前
李李原上草完成签到 ,获得积分10
52秒前
DrW1111发布了新的文献求助10
54秒前
旨酒欣欣应助ho hou h采纳,获得10
1分钟前
DrW1111完成签到,获得积分10
1分钟前
1分钟前
anthea完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
无语的诗柳完成签到 ,获得积分10
1分钟前
禹依白发布了新的文献求助10
1分钟前
禹依白完成签到,获得积分10
1分钟前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176