A Mobile App That Addresses Interpretability Challenges in Machine Learning–Based Diabetes Predictions: Survey-Based User Study

可解释性 移动应用程序 计算机科学 机器学习 糖尿病 人工智能 人机交互 数据科学 万维网 医学 内分泌学
作者
Rasha Hendawi,Juan Li,Souradip Roy
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e50328-e50328
标识
DOI:10.2196/50328
摘要

Machine learning approaches, including deep learning, have demonstrated remarkable effectiveness in the diagnosis and prediction of diabetes. However, these approaches often operate as opaque black boxes, leaving health care providers in the dark about the reasoning behind predictions. This opacity poses a barrier to the widespread adoption of machine learning in diabetes and health care, leading to confusion and eroding trust.This study aimed to address this critical issue by developing and evaluating an explainable artificial intelligence (AI) platform, XAI4Diabetes, designed to empower health care professionals with a clear understanding of AI-generated predictions and recommendations for diabetes care. XAI4Diabetes not only delivers diabetes risk predictions but also furnishes easily interpretable explanations for complex machine learning models and their outcomes.XAI4Diabetes features a versatile multimodule explanation framework that leverages machine learning, knowledge graphs, and ontologies. The platform comprises the following four essential modules: (1) knowledge base, (2) knowledge matching, (3) prediction, and (4) interpretation. By harnessing AI techniques, XAI4Diabetes forecasts diabetes risk and provides valuable insights into the prediction process and outcomes. A structured, survey-based user study assessed the app's usability and influence on participants' comprehension of machine learning predictions in real-world patient scenarios.A prototype mobile app was meticulously developed and subjected to thorough usability studies and satisfaction surveys. The evaluation study findings underscore the substantial improvement in medical professionals' comprehension of key aspects, including the (1) diabetes prediction process, (2) data sets used for model training, (3) data features used, and (4) relative significance of different features in prediction outcomes. Most participants reported heightened understanding of and trust in AI predictions following their use of XAI4Diabetes. The satisfaction survey results further revealed a high level of overall user satisfaction with the tool.This study introduces XAI4Diabetes, a versatile multi-model explainable prediction platform tailored to diabetes care. By enabling transparent diabetes risk predictions and delivering interpretable insights, XAI4Diabetes empowers health care professionals to comprehend the AI-driven decision-making process, thereby fostering transparency and trust. These advancements hold the potential to mitigate biases and facilitate the broader integration of AI in diabetes care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严剑封发布了新的文献求助10
1秒前
1秒前
汪少侠完成签到,获得积分10
1秒前
nini完成签到,获得积分10
7秒前
9秒前
YHF2完成签到,获得积分10
9秒前
12秒前
dt完成签到,获得积分10
14秒前
顶顶小明发布了新的文献求助10
14秒前
共享精神应助robi采纳,获得10
16秒前
19秒前
柳觅夏完成签到,获得积分10
20秒前
云辞忧完成签到,获得积分10
21秒前
23秒前
xi发布了新的文献求助10
27秒前
忧虑的访梦完成签到,获得积分10
28秒前
28秒前
lanlan完成签到 ,获得积分20
29秒前
顶顶小明完成签到,获得积分10
29秒前
robi发布了新的文献求助10
31秒前
苏桑焉完成签到 ,获得积分10
32秒前
王羊补牢完成签到 ,获得积分10
34秒前
机智的曼易完成签到 ,获得积分10
35秒前
36秒前
杨秋月发布了新的文献求助10
36秒前
惑感完成签到 ,获得积分10
40秒前
哈哈哈哈哈完成签到,获得积分10
40秒前
科研通AI2S应助宇文思采纳,获得30
40秒前
able完成签到 ,获得积分10
43秒前
43秒前
47秒前
杨秋月完成签到,获得积分10
47秒前
47秒前
48秒前
完美世界应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
研友_VZG7GZ应助科研通管家采纳,获得10
49秒前
慕青应助科研通管家采纳,获得10
49秒前
49秒前
zyy6657完成签到,获得积分10
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825