阻尼器
非线性系统
振动
涡流
结构工程
工程类
控制理论(社会学)
机械
控制(管理)
计算机科学
声学
物理
电气工程
量子力学
人工智能
作者
Zhipeng Cheng,Zhihao Wang,Kaiming Bi,Kaiqiang Cui,Hui Gao
标识
DOI:10.1142/s0219455424502134
摘要
This paper investigates the inherent nonlinear damping characteristics of a rotary eddy-current damper (RECD) and evaluates its vibration control performance on a single-degree-of-freedom (SDOF) system subjected to harmonic and seismic excitations. First, a RECD prototype was manufactured to experimentally identify its intrinsic nonlinear eddy-current damping characteristics. A magic formula model is then proposed to characterize the relationship between the eddy-current damping force and the velocity of the RECD, and its applicability in depicting the nonlinear damping characteristics of the RECD is evaluated by comparing with the electromagnetic finite-element (FE) model and the commonly used Wouterse’s model. Moreover, by comparing the experimental and analytical frequency–domain responses of an SDOF structure equipped with a RECD, the applicability of the magic formula model in evaluating the structural vibration control performance of the RECD is further verified. Finally, the control performance of the RECD for an SDOF structure subjected to earthquake ground motions is numerically evaluated and compared. Results show that the eddy-current damping force of the RECD presents obvious nonlinear characteristics with increasing velocity, and the proposed magic formula model can adequately depict the nonlinear eddy-current damping characteristics of the RECD. Moreover, the RECD exhibits superior structural control performance under harmonic and seismic excitations.
科研通智能强力驱动
Strongly Powered by AbleSci AI