亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting Salient Object Detection With Transformer-Based Asymmetric Bilateral U-Net

变压器 计算机科学 Boosting(机器学习) 人工智能 目标检测 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Yu Qiu,Yun Liu,Le Zhang,Haotian Lu,Jing Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2332-2345 被引量:24
标识
DOI:10.1109/tcsvt.2023.3307693
摘要

Existing salient object detection (SOD) methods mainly rely on U-shaped convolution neural networks (CNNs) with skip connections to combine the global contexts and local spatial details that are crucial for locating salient objects and refining object details, respectively. Despite great successes, the ability of CNNs in learning global contexts is limited. Recently, the vision transformer has achieved revolutionary progress in computer vision owing to its powerful modeling of global dependencies. However, directly applying the transformer to SOD is suboptimal because the transformer lacks the ability to learn local spatial representations. To this end, this paper explores the combination of transformers and CNNs to learn both global and local representations for SOD. We propose a transformer-based Asymmetric Bilateral U-Net (ABiU-Net). The asymmetric bilateral encoder has a transformer path and a lightweight CNN path, where the two paths communicate at each encoder stage to learn complementary global contexts and local spatial details, respectively. The asymmetric bilateral decoder also consists of two paths to process features from the transformer and CNN encoder paths, with communication at each decoder stage for decoding coarse salient object locations and fine-grained object details, respectively. Such communication between the two encoder/decoder paths enables AbiU-Net to learn complementary global and local representations, taking advantage of the natural merits of transformers and CNNs, respectively. Hence, ABiU-Net provides a new perspective for transformer-based SOD. Extensive experiments demonstrate that ABiU-Net performs favorably against previous state-of-the-art SOD methods. The code is available at https://github.com/yuqiuyuqiu/ABiU-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
KINGAZX完成签到 ,获得积分10
12秒前
13秒前
冷漠的杨老板完成签到,获得积分10
21秒前
慕青应助科研通管家采纳,获得10
23秒前
1206425219密完成签到,获得积分10
30秒前
37秒前
顺顺发布了新的文献求助10
42秒前
丘比特应助顺顺采纳,获得10
49秒前
51秒前
Fern发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
1分钟前
默默的青烟完成签到,获得积分10
1分钟前
共享精神应助力元11采纳,获得10
1分钟前
2分钟前
2分钟前
力元11发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
Everything完成签到,获得积分10
2分钟前
Tim完成签到 ,获得积分0
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
3分钟前
Tiger完成签到,获得积分10
3分钟前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
3分钟前
mama完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
kaiwenleo完成签到,获得积分10
3分钟前
千跃应助kaiwenleo采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015162
求助须知:如何正确求助?哪些是违规求助? 3555134
关于积分的说明 11317907
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983