Boosting Salient Object Detection With Transformer-Based Asymmetric Bilateral U-Net

变压器 计算机科学 Boosting(机器学习) 人工智能 目标检测 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Yu Qiu,Yun Liu,Le Zhang,Haotian Lu,Jing Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2332-2345 被引量:24
标识
DOI:10.1109/tcsvt.2023.3307693
摘要

Existing salient object detection (SOD) methods mainly rely on U-shaped convolution neural networks (CNNs) with skip connections to combine the global contexts and local spatial details that are crucial for locating salient objects and refining object details, respectively. Despite great successes, the ability of CNNs in learning global contexts is limited. Recently, the vision transformer has achieved revolutionary progress in computer vision owing to its powerful modeling of global dependencies. However, directly applying the transformer to SOD is suboptimal because the transformer lacks the ability to learn local spatial representations. To this end, this paper explores the combination of transformers and CNNs to learn both global and local representations for SOD. We propose a transformer-based Asymmetric Bilateral U-Net (ABiU-Net). The asymmetric bilateral encoder has a transformer path and a lightweight CNN path, where the two paths communicate at each encoder stage to learn complementary global contexts and local spatial details, respectively. The asymmetric bilateral decoder also consists of two paths to process features from the transformer and CNN encoder paths, with communication at each decoder stage for decoding coarse salient object locations and fine-grained object details, respectively. Such communication between the two encoder/decoder paths enables AbiU-Net to learn complementary global and local representations, taking advantage of the natural merits of transformers and CNNs, respectively. Hence, ABiU-Net provides a new perspective for transformer-based SOD. Extensive experiments demonstrate that ABiU-Net performs favorably against previous state-of-the-art SOD methods. The code is available at https://github.com/yuqiuyuqiu/ABiU-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
1秒前
1秒前
hhhhhhelp完成签到,获得积分10
1秒前
1秒前
XBJ完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
jy完成签到,获得积分10
4秒前
Maestro_S发布了新的文献求助10
4秒前
zzzz发布了新的文献求助10
5秒前
WHTTTTT发布了新的文献求助30
5秒前
情怀应助zg采纳,获得10
5秒前
5秒前
及禾完成签到,获得积分0
5秒前
如果多年后完成签到,获得积分10
6秒前
tonyfountain发布了新的文献求助30
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
8秒前
顾矜应助王燕涛采纳,获得10
8秒前
hyy发布了新的文献求助10
8秒前
9秒前
dominate完成签到,获得积分10
9秒前
花花完成签到 ,获得积分10
9秒前
喧极反寂完成签到,获得积分10
9秒前
jiyuan完成签到,获得积分10
10秒前
10秒前
cherryhuang发布了新的文献求助20
10秒前
gmjinfeng完成签到,获得积分0
10秒前
香蕉觅云应助XZTX采纳,获得10
11秒前
Naomi发布了新的文献求助10
12秒前
12秒前
znn发布了新的文献求助10
12秒前
一叶舟发布了新的文献求助10
12秒前
001发布了新的文献求助10
13秒前
13秒前
李爱国应助呆萌的仇天采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729