双模块
数学
内射函数
纯数学
投射模
内射模
戒指(化学)
扁平模块
背景(考古学)
域代数上的
有限生成交换群
生物
古生物学
有机化学
化学
标识
DOI:10.1142/s0219498825500306
摘要
We introduce the concepts of generalized compatible and cocompatible bimodules in order to characterize Gorenstein projective, injective and flat modules over trivial ring extensions. Let [Formula: see text] be a trivial extension of a ring [Formula: see text] by an [Formula: see text]-[Formula: see text]-bimodule [Formula: see text] such that [Formula: see text] is a generalized compatible [Formula: see text]-[Formula: see text]-bimodule and [Formula: see text] is a generalized compatible [Formula: see text]-[Formula: see text]-bimodule. We prove that [Formula: see text] is a Gorenstein projective left [Formula: see text]-module if and only if the sequence [Formula: see text] is exact and coker([Formula: see text]) is a Gorenstein projective left [Formula: see text]-module. Analogously, we explicitly characterize Gorenstein injective and flat modules over trivial ring extensions. As an application, we describe Gorenstein projective, injective and flat modules over Morita context rings with zero bimodule homomorphisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI