Can transactional use of AI-controlled voice assistants for service delivery pickup pace in the near future? A social learning theory (SLT) perspective

交易型领导 知识管理 服务(商务) 模仿 服务交付框架 步伐 社会影响力 计算机科学 营销 心理学 社会心理学 业务 大地测量学 地理
作者
Saeed Badghish,Aqueeb Sohail Shaik,Nidhi Sahore,Shalini Srivastava,A. Masood
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:198: 122972-122972 被引量:3
标识
DOI:10.1016/j.techfore.2023.122972
摘要

This paper examines, through the lens of social learning theory, the possibility of transactional use of AI-controlled voice assistants for service delivery to pick up speed in the near future (SLT). In this work, we use the Partial Least Square Structural Equation Modeling (PLS-SEM), (N = 316), to test the suggested model. The SLT, which contends that learning is a social process that occurs via observation and imitation of other people's behaviour, is the foundation of the study's theoretical framework. The study discovered that the perceived usefulness of AI Voice assistants, technological attractiveness, and technological trust can all have an impact on the transactional use of AI-controlled voice assistants for service delivery. According to the study's findings, all three variables were directly related to the transactional use of AI-controlled voice assistants and were also mediated by behavioural intention. Results also indicated that increasing users' perceptions of the technology's usefulness and ease of use will speed up the adoption of transactional use of AI-controlled VAs for service delivery. The study also emphasises the significance of customer churn and social resistance in influencing customers' attitudes towards technology and willingness to adopt it. Findings also highlight the necessity for businesses to consider the elements that impact the customers' adoption and offer insightful arguments of how the potential of AI-controlled VAs for service delivery is to accelerate in the coming future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助重要手机采纳,获得10
2秒前
怕黑道消完成签到 ,获得积分10
2秒前
背后的果汁完成签到,获得积分10
4秒前
彩色草莓发布了新的文献求助30
5秒前
5秒前
5秒前
9秒前
10秒前
gishisei发布了新的文献求助10
10秒前
LL完成签到,获得积分10
11秒前
minghanl完成签到,获得积分10
11秒前
乐乐应助时尚的开山采纳,获得10
11秒前
11秒前
13秒前
无奈醉柳完成签到 ,获得积分20
14秒前
意安发布了新的文献求助10
14秒前
大模型应助土星采纳,获得10
14秒前
15秒前
8R60d8应助liyi采纳,获得10
16秒前
卡皮巴拉发布了新的文献求助10
16秒前
16秒前
17秒前
乐乐应助橘络采纳,获得10
18秒前
重要手机发布了新的文献求助10
18秒前
18秒前
开心夜云完成签到,获得积分10
22秒前
小付发布了新的文献求助10
22秒前
李健应助天亮了采纳,获得10
22秒前
23秒前
26秒前
充电宝应助大大豆腐干采纳,获得10
26秒前
27秒前
张宇发布了新的文献求助10
27秒前
xxxx完成签到 ,获得积分10
28秒前
时尚的开山完成签到,获得积分10
28秒前
pcx发布了新的文献求助10
32秒前
32秒前
35秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589