清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network

人工神经网络 径向基函数 蒸散量 地下水 含水层 多层感知器 地平线 平均绝对百分比误差 统计 测井 时间范围 人工智能 计算机科学 机器学习 数学 环境科学 地质学 石油工程 数学优化 岩土工程 生物 几何学 生态学
作者
Fabio Di Nunno,Carlo Giudicianni,Enrico Creaco,Francesco Granata
出处
期刊:Groundwater for Sustainable Development [Elsevier]
卷期号:23: 101042-101042 被引量:1
标识
DOI:10.1016/j.gsd.2023.101042
摘要

In recent years, the increasing influence of climate change on the water cycle has emphasized the significance of analyzing and forecasting groundwater level (GWL) for effective water resource planning and management. This study proposes a comparative analysis of multi-step ahead daily GWL prediction by means of two different models. The former is an ensemble model, based on the stacking of two Machine Learning algorithms, Multilayer Perceptron (MLP) and Random Forest (RF). The second model is represented by a Radial Basis Function Neural Network (RBF-NN). For the modelling, a mid-term forecast horizon of up to 30 days was considered, while the precipitation and evapotranspiration were included as exogenous inputs. Three different wells located on the chalk aquifers of the northeastern region of France referred to as PZ, S1, and LS4, were selected for this study. The RBF-NN model demonstrated superior performance compared to the stacked MLP-RF model for wells PZ and S1. Conversely, for well LS4, both models displayed similar performance, albeit with a marginally higher accuracy observed in the stacked MLP-RF model. However, both models yielded accurate predictions of the GWL across all three wells, with R2 values exceeding 0.87 for all the wells and forecasting horizons. Furthermore, the RBF-NN model showed fewer reductions in performance as the forecasting horizon increased compared to the stacked MLP-RF model, leading to more reliable predictions even for a 30-day forecast horizon. An evident trend of decreasing Mean Absolute Percentage Error (MAPE) was observed from the 1st quartile to the 4th quartile of forecasted values. This highlights the models’ improved ability to provide accurate forecasts for deeper GWL values. The future developments of this research will be aimed at overcoming some limitations of the study, including lagged values of the exogenous variables precipitation and evaporation among the predictors, and considering aquifers with different hydrogeological characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
17秒前
芙瑞完成签到 ,获得积分10
33秒前
46秒前
lutos发布了新的文献求助10
51秒前
57秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
平常以云完成签到 ,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
bogula1112完成签到 ,获得积分10
2分钟前
lilyzhang2023完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
drhwang完成签到,获得积分10
3分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
单薄水星发布了新的文献求助10
4分钟前
4分钟前
lutos发布了新的文献求助10
4分钟前
hoy完成签到 ,获得积分10
4分钟前
科研通AI2S应助ceeray23采纳,获得20
4分钟前
林楚棋完成签到 ,获得积分10
5分钟前
务实的初蝶完成签到 ,获得积分10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
Yuki完成签到 ,获得积分10
5分钟前
小珂完成签到,获得积分10
5分钟前
清秀LL完成签到 ,获得积分10
5分钟前
山东大煎饼完成签到,获得积分10
6分钟前
lllyjs完成签到 ,获得积分10
6分钟前
wuqi完成签到 ,获得积分10
7分钟前
大医仁心完成签到 ,获得积分10
7分钟前
7分钟前
小小虾完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685602
关于积分的说明 14838712
捐赠科研通 4672541
什么是DOI,文献DOI怎么找? 2538338
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965