亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network

人工神经网络 径向基函数 蒸散量 地下水 含水层 多层感知器 地平线 平均绝对百分比误差 统计 测井 时间范围 人工智能 计算机科学 机器学习 数学 环境科学 地质学 石油工程 数学优化 岩土工程 生物 几何学 生态学
作者
Fabio Di Nunno,Carlo Giudicianni,Enrico Creaco,Francesco Granata
出处
期刊:Groundwater for Sustainable Development [Elsevier]
卷期号:23: 101042-101042 被引量:1
标识
DOI:10.1016/j.gsd.2023.101042
摘要

In recent years, the increasing influence of climate change on the water cycle has emphasized the significance of analyzing and forecasting groundwater level (GWL) for effective water resource planning and management. This study proposes a comparative analysis of multi-step ahead daily GWL prediction by means of two different models. The former is an ensemble model, based on the stacking of two Machine Learning algorithms, Multilayer Perceptron (MLP) and Random Forest (RF). The second model is represented by a Radial Basis Function Neural Network (RBF-NN). For the modelling, a mid-term forecast horizon of up to 30 days was considered, while the precipitation and evapotranspiration were included as exogenous inputs. Three different wells located on the chalk aquifers of the northeastern region of France referred to as PZ, S1, and LS4, were selected for this study. The RBF-NN model demonstrated superior performance compared to the stacked MLP-RF model for wells PZ and S1. Conversely, for well LS4, both models displayed similar performance, albeit with a marginally higher accuracy observed in the stacked MLP-RF model. However, both models yielded accurate predictions of the GWL across all three wells, with R2 values exceeding 0.87 for all the wells and forecasting horizons. Furthermore, the RBF-NN model showed fewer reductions in performance as the forecasting horizon increased compared to the stacked MLP-RF model, leading to more reliable predictions even for a 30-day forecast horizon. An evident trend of decreasing Mean Absolute Percentage Error (MAPE) was observed from the 1st quartile to the 4th quartile of forecasted values. This highlights the models’ improved ability to provide accurate forecasts for deeper GWL values. The future developments of this research will be aimed at overcoming some limitations of the study, including lagged values of the exogenous variables precipitation and evaporation among the predictors, and considering aquifers with different hydrogeological characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SamSimple完成签到,获得积分10
2秒前
刘MTY完成签到 ,获得积分10
9秒前
10秒前
cm完成签到,获得积分10
13秒前
汉堡包应助老实的文龙采纳,获得10
14秒前
17秒前
蛋仔发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
pay发布了新的文献求助10
22秒前
23秒前
26秒前
27秒前
28秒前
星驰完成签到 ,获得积分10
28秒前
北陌完成签到 ,获得积分10
30秒前
合适的初蓝完成签到 ,获得积分10
31秒前
histamin完成签到,获得积分10
32秒前
李同学发布了新的文献求助10
32秒前
AQI发布了新的文献求助10
33秒前
ljx完成签到 ,获得积分10
34秒前
Zz完成签到 ,获得积分10
34秒前
独特的醉山关注了科研通微信公众号
39秒前
西格玛完成签到,获得积分10
43秒前
科研通AI2S应助yuyu采纳,获得30
43秒前
苏木应助yuyu采纳,获得10
43秒前
玉米完成签到,获得积分10
45秒前
娇娇完成签到 ,获得积分10
46秒前
Beginner完成签到,获得积分10
48秒前
小怪给小怪的求助进行了留言
51秒前
斯文败类应助科研通管家采纳,获得10
51秒前
斯文败类应助科研通管家采纳,获得10
51秒前
华仔应助科研通管家采纳,获得10
51秒前
51秒前
华仔应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
51秒前
51秒前
Aile。完成签到,获得积分10
52秒前
玉米2号完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754595
求助须知:如何正确求助?哪些是违规求助? 5487917
关于积分的说明 15380281
捐赠科研通 4893160
什么是DOI,文献DOI怎么找? 2631746
邀请新用户注册赠送积分活动 1579693
关于科研通互助平台的介绍 1535417