Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network

人工神经网络 径向基函数 蒸散量 地下水 含水层 多层感知器 地平线 平均绝对百分比误差 统计 测井 时间范围 人工智能 计算机科学 机器学习 数学 环境科学 地质学 石油工程 数学优化 岩土工程 生态学 几何学 生物
作者
Fabio Di Nunno,Carlo Giudicianni,Enrico Creaco,Francesco Granata
出处
期刊:Groundwater for Sustainable Development [Elsevier]
卷期号:23: 101042-101042 被引量:1
标识
DOI:10.1016/j.gsd.2023.101042
摘要

In recent years, the increasing influence of climate change on the water cycle has emphasized the significance of analyzing and forecasting groundwater level (GWL) for effective water resource planning and management. This study proposes a comparative analysis of multi-step ahead daily GWL prediction by means of two different models. The former is an ensemble model, based on the stacking of two Machine Learning algorithms, Multilayer Perceptron (MLP) and Random Forest (RF). The second model is represented by a Radial Basis Function Neural Network (RBF-NN). For the modelling, a mid-term forecast horizon of up to 30 days was considered, while the precipitation and evapotranspiration were included as exogenous inputs. Three different wells located on the chalk aquifers of the northeastern region of France referred to as PZ, S1, and LS4, were selected for this study. The RBF-NN model demonstrated superior performance compared to the stacked MLP-RF model for wells PZ and S1. Conversely, for well LS4, both models displayed similar performance, albeit with a marginally higher accuracy observed in the stacked MLP-RF model. However, both models yielded accurate predictions of the GWL across all three wells, with R2 values exceeding 0.87 for all the wells and forecasting horizons. Furthermore, the RBF-NN model showed fewer reductions in performance as the forecasting horizon increased compared to the stacked MLP-RF model, leading to more reliable predictions even for a 30-day forecast horizon. An evident trend of decreasing Mean Absolute Percentage Error (MAPE) was observed from the 1st quartile to the 4th quartile of forecasted values. This highlights the models’ improved ability to provide accurate forecasts for deeper GWL values. The future developments of this research will be aimed at overcoming some limitations of the study, including lagged values of the exogenous variables precipitation and evaporation among the predictors, and considering aquifers with different hydrogeological characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到,获得积分10
1秒前
LSH970829发布了新的文献求助10
1秒前
哈哈哈完成签到 ,获得积分10
2秒前
汤姆完成签到,获得积分10
2秒前
4秒前
4秒前
翠翠完成签到,获得积分10
5秒前
5秒前
LSH970829完成签到,获得积分10
6秒前
Lyg完成签到,获得积分20
7秒前
坚强的樱发布了新的文献求助10
7秒前
baodingning完成签到,获得积分10
8秒前
8秒前
公茂源发布了新的文献求助30
8秒前
热爱完成签到,获得积分10
9秒前
10秒前
叫滚滚发布了新的文献求助10
11秒前
星瑆心完成签到,获得积分10
11秒前
啦啦啦啦啦完成签到,获得积分10
12秒前
Lyg发布了新的文献求助10
12秒前
Dksido完成签到,获得积分10
13秒前
兰博基尼奥完成签到,获得积分10
13秒前
热情芷荷发布了新的文献求助10
15秒前
random完成签到,获得积分10
16秒前
16秒前
果果瑞宁完成签到,获得积分10
16秒前
17秒前
机智小虾米完成签到,获得积分20
17秒前
goldenfleece完成签到,获得积分10
18秒前
科研通AI2S应助学者采纳,获得10
18秒前
小杨完成签到,获得积分10
19秒前
sutharsons应助科研通管家采纳,获得30
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808