Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network

人工神经网络 径向基函数 蒸散量 地下水 含水层 多层感知器 地平线 平均绝对百分比误差 统计 测井 时间范围 人工智能 计算机科学 机器学习 数学 环境科学 地质学 石油工程 数学优化 岩土工程 生物 几何学 生态学
作者
Fabio Di Nunno,Carlo Giudicianni,Enrico Creaco,Francesco Granata
出处
期刊:Groundwater for Sustainable Development [Elsevier]
卷期号:23: 101042-101042 被引量:1
标识
DOI:10.1016/j.gsd.2023.101042
摘要

In recent years, the increasing influence of climate change on the water cycle has emphasized the significance of analyzing and forecasting groundwater level (GWL) for effective water resource planning and management. This study proposes a comparative analysis of multi-step ahead daily GWL prediction by means of two different models. The former is an ensemble model, based on the stacking of two Machine Learning algorithms, Multilayer Perceptron (MLP) and Random Forest (RF). The second model is represented by a Radial Basis Function Neural Network (RBF-NN). For the modelling, a mid-term forecast horizon of up to 30 days was considered, while the precipitation and evapotranspiration were included as exogenous inputs. Three different wells located on the chalk aquifers of the northeastern region of France referred to as PZ, S1, and LS4, were selected for this study. The RBF-NN model demonstrated superior performance compared to the stacked MLP-RF model for wells PZ and S1. Conversely, for well LS4, both models displayed similar performance, albeit with a marginally higher accuracy observed in the stacked MLP-RF model. However, both models yielded accurate predictions of the GWL across all three wells, with R2 values exceeding 0.87 for all the wells and forecasting horizons. Furthermore, the RBF-NN model showed fewer reductions in performance as the forecasting horizon increased compared to the stacked MLP-RF model, leading to more reliable predictions even for a 30-day forecast horizon. An evident trend of decreasing Mean Absolute Percentage Error (MAPE) was observed from the 1st quartile to the 4th quartile of forecasted values. This highlights the models’ improved ability to provide accurate forecasts for deeper GWL values. The future developments of this research will be aimed at overcoming some limitations of the study, including lagged values of the exogenous variables precipitation and evaporation among the predictors, and considering aquifers with different hydrogeological characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助执着的玉米采纳,获得10
1秒前
guozizi发布了新的文献求助10
1秒前
大模型应助FJ采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
陈秋禹发布了新的文献求助10
3秒前
4秒前
Celine完成签到,获得积分10
5秒前
Ccc完成签到 ,获得积分10
6秒前
6秒前
寒树发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
10秒前
糖豆完成签到,获得积分20
10秒前
快乐的画笔完成签到 ,获得积分10
12秒前
一棵树完成签到,获得积分10
12秒前
玛斯特尔发布了新的文献求助10
12秒前
13秒前
显隐发布了新的文献求助10
14秒前
14秒前
14秒前
兜有米完成签到,获得积分10
14秒前
Owen应助猪肉超人菜婴蚊采纳,获得10
15秒前
研友_VZG7GZ应助冷酷海安采纳,获得10
16秒前
会飞的鱼发布了新的文献求助10
16秒前
晚风将近发布了新的文献求助10
16秒前
斯文小白菜完成签到 ,获得积分10
16秒前
李爱国应助寒树采纳,获得10
16秒前
ding应助坚强的笑天采纳,获得10
16秒前
17秒前
wangbq完成签到 ,获得积分10
17秒前
共享精神应助小刘同学采纳,获得10
18秒前
王尧完成签到,获得积分10
18秒前
zrz完成签到,获得积分10
19秒前
19秒前
嬴渠梁发布了新的文献求助30
19秒前
19秒前
NexusExplorer应助糟糕的访梦采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742911
求助须知:如何正确求助?哪些是违规求助? 5411336
关于积分的说明 15346296
捐赠科研通 4883960
什么是DOI,文献DOI怎么找? 2625453
邀请新用户注册赠送积分活动 1574294
关于科研通互助平台的介绍 1531234