亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network

人工神经网络 径向基函数 蒸散量 地下水 含水层 多层感知器 地平线 平均绝对百分比误差 统计 测井 时间范围 人工智能 计算机科学 机器学习 数学 环境科学 地质学 石油工程 数学优化 岩土工程 生物 几何学 生态学
作者
Fabio Di Nunno,Carlo Giudicianni,Enrico Creaco,Francesco Granata
出处
期刊:Groundwater for Sustainable Development [Elsevier BV]
卷期号:23: 101042-101042 被引量:1
标识
DOI:10.1016/j.gsd.2023.101042
摘要

In recent years, the increasing influence of climate change on the water cycle has emphasized the significance of analyzing and forecasting groundwater level (GWL) for effective water resource planning and management. This study proposes a comparative analysis of multi-step ahead daily GWL prediction by means of two different models. The former is an ensemble model, based on the stacking of two Machine Learning algorithms, Multilayer Perceptron (MLP) and Random Forest (RF). The second model is represented by a Radial Basis Function Neural Network (RBF-NN). For the modelling, a mid-term forecast horizon of up to 30 days was considered, while the precipitation and evapotranspiration were included as exogenous inputs. Three different wells located on the chalk aquifers of the northeastern region of France referred to as PZ, S1, and LS4, were selected for this study. The RBF-NN model demonstrated superior performance compared to the stacked MLP-RF model for wells PZ and S1. Conversely, for well LS4, both models displayed similar performance, albeit with a marginally higher accuracy observed in the stacked MLP-RF model. However, both models yielded accurate predictions of the GWL across all three wells, with R2 values exceeding 0.87 for all the wells and forecasting horizons. Furthermore, the RBF-NN model showed fewer reductions in performance as the forecasting horizon increased compared to the stacked MLP-RF model, leading to more reliable predictions even for a 30-day forecast horizon. An evident trend of decreasing Mean Absolute Percentage Error (MAPE) was observed from the 1st quartile to the 4th quartile of forecasted values. This highlights the models’ improved ability to provide accurate forecasts for deeper GWL values. The future developments of this research will be aimed at overcoming some limitations of the study, including lagged values of the exogenous variables precipitation and evaporation among the predictors, and considering aquifers with different hydrogeological characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助李涛采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
万能图书馆应助小路采纳,获得10
47秒前
55秒前
李爱国应助orangel采纳,获得10
1分钟前
1分钟前
1分钟前
怕黑行恶发布了新的文献求助10
1分钟前
orangel发布了新的文献求助10
1分钟前
orangel完成签到,获得积分10
1分钟前
2分钟前
传奇3应助烨枫晨曦采纳,获得10
2分钟前
2分钟前
Ava应助ChloeF采纳,获得10
2分钟前
烨枫晨曦发布了新的文献求助10
2分钟前
Jason完成签到,获得积分20
2分钟前
梦璃完成签到 ,获得积分10
2分钟前
Jason发布了新的文献求助10
2分钟前
ChloeF发布了新的文献求助10
2分钟前
2分钟前
Jasper应助Jason采纳,获得10
2分钟前
卓天宇完成签到,获得积分10
2分钟前
2分钟前
2分钟前
SUN发布了新的文献求助10
2分钟前
小路发布了新的文献求助10
3分钟前
张美环完成签到 ,获得积分10
3分钟前
ChloeF发布了新的文献求助10
3分钟前
Nature2025完成签到 ,获得积分10
3分钟前
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
4分钟前
肉丸完成签到 ,获得积分10
5分钟前
小鱼完成签到 ,获得积分10
5分钟前
孙燕应助科研通管家采纳,获得30
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
小新小新完成签到 ,获得积分10
6分钟前
我是老大应助boluohu采纳,获得10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302798
求助须知:如何正确求助?哪些是违规求助? 4449837
关于积分的说明 13848726
捐赠科研通 4336166
什么是DOI,文献DOI怎么找? 2380799
邀请新用户注册赠送积分活动 1375751
关于科研通互助平台的介绍 1342107