Natural Language Processing for Adjudication of Heart Failure in a Multicenter Clinical Trial

裁决 医学 心力衰竭 临床试验 一致性 病历 金标准(测试) 队列 重症监护医学 急诊医学 儿科 内科学 政治学 法学
作者
Jonathan W. Cunningham,Pulkit Singh,Christopher Reeder,Brian Claggett,Pablo-Miki Martí Castellote,Emily S. Lau,Shaan Khurshid,Puneet Batra,Steven A. Lubitz,Mahnaz Maddah,Anthony Philippakis,Akshay S. Desai,Patrick T. Ellinor,Orly Vardeny,Scott D. Solomon,Jennifer E. Ho
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (2): 174-174 被引量:12
标识
DOI:10.1001/jamacardio.2023.4859
摘要

Importance The gold standard for outcome adjudication in clinical trials is medical record review by a physician clinical events committee (CEC), which requires substantial time and expertise. Automated adjudication of medical records by natural language processing (NLP) may offer a more resource-efficient alternative but this approach has not been validated in a multicenter setting. Objective To externally validate the Community Care Cohort Project (C3PO) NLP model for heart failure (HF) hospitalization adjudication, which was previously developed and tested within one health care system, compared to gold-standard CEC adjudication in a multicenter clinical trial. Design, Setting, and Participants This was a retrospective analysis of the Influenza Vaccine to Effectively Stop Cardio Thoracic Events and Decompensated Heart Failure (INVESTED) trial, which compared 2 influenza vaccines in 5260 participants with cardiovascular disease at 157 sites in the US and Canada between September 2016 and January 2019. Analysis was performed from November 2022 to October 2023. Exposures Individual sites submitted medical records for each hospitalization. The central INVESTED CEC and the C3PO NLP model independently adjudicated whether the cause of hospitalization was HF using the prepared hospitalization dossier. The C3PO NLP model was fine-tuned (C3PO + INVESTED) and a de novo NLP model was trained using half the INVESTED hospitalizations. Main Outcomes and Measures Concordance between the C3PO NLP model HF adjudication and the gold-standard INVESTED CEC adjudication was measured by raw agreement, κ, sensitivity, and specificity. The fine-tuned and de novo INVESTED NLP models were evaluated in an internal validation cohort not used for training. Results Among 4060 hospitalizations in 1973 patients (mean [SD] age, 66.4 [13.2] years; 514 [27.4%] female and 1432 [72.6%] male]), 1074 hospitalizations (26%) were adjudicated as HF by the CEC. There was good agreement between the C3PO NLP and CEC HF adjudications (raw agreement, 87% [95% CI, 86-88]; κ, 0.69 [95% CI, 0.66-0.72]). C3PO NLP model sensitivity was 94% (95% CI, 92-95) and specificity was 84% (95% CI, 83-85). The fine-tuned C3PO and de novo NLP models demonstrated agreement of 93% (95% CI, 92-94) and κ of 0.82 (95% CI, 0.77-0.86) and 0.83 (95% CI, 0.79-0.87), respectively, vs the CEC. CEC reviewer interrater reproducibility was 94% (95% CI, 93-95; κ, 0.85 [95% CI, 0.80-0.89]). Conclusions and Relevance The C3PO NLP model developed within 1 health care system identified HF events with good agreement relative to the gold-standard CEC in an external multicenter clinical trial. Fine-tuning the model improved agreement and approximated human reproducibility. Further study is needed to determine whether NLP will improve the efficiency of future multicenter clinical trials by identifying clinical events at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净溪流发布了新的文献求助10
1秒前
在水一方应助LJL采纳,获得10
2秒前
充电宝应助服部平次采纳,获得10
5秒前
6秒前
7秒前
Y_Z完成签到 ,获得积分10
8秒前
8秒前
10秒前
13秒前
Owen发布了新的文献求助10
13秒前
Bearbiscuit发布了新的文献求助10
13秒前
hello发布了新的文献求助10
14秒前
14秒前
15秒前
陶火桃发布了新的文献求助10
15秒前
芈钥完成签到 ,获得积分10
15秒前
jwu发布了新的文献求助10
16秒前
啊哈完成签到,获得积分10
17秒前
胡萝卜icc发布了新的文献求助10
18秒前
20秒前
我是老大应助liweiDr采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
22秒前
苏卿应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
良辰应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
毛豆爸爸应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
23秒前
23秒前
毛豆爸爸应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
环糊精发布了新的文献求助10
25秒前
胡萝卜icc完成签到,获得积分10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139285
求助须知:如何正确求助?哪些是违规求助? 2790137
关于积分的说明 7794105
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301261
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109