Light-Driven Nitrogen Fixation to Ammonia over Aqueous-Dispersed Mo-Doped TiO2 Colloidal Nanocrystals

材料科学 兴奋剂 光催化 氨生产 纳米技术 纳米晶 化学工程 水溶液 载流子 半导体 催化作用 光电子学 有机化学 化学 工程类
作者
Mariam Barawi,Miguel García‐Tecedor,Miguel Gomez‐Mendoza,Giulio Gorni,Marta Liras,Víctor A. de la Peña O’Shea,Laura Collado
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (46): 53382-53394 被引量:1
标识
DOI:10.1021/acsami.3c10396
摘要

Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N2 and H2O). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance. Widely used bulk materials generally suffer from charge recombination due to poor interfacial charge transfer and difficult surface diffusion. To overcome this limitation, this work explores the use of aqueous-dispersed colloidal semiconductor nanocrystals (NCs) with precise morphological control, better carrier mobility, and stronger redox ability. Here, the TiO2 framework has been modified via aliovalent molybdenum doping, and resulting Mo-TiO2 NCs have been functionalized with charged terminating hydroxyl groups (OH-) for the simultaneous production of ammonia, nitrites, and nitrates via photocatalytic nitrogen reduction in water, which has not been previously found in the literature. Our results demonstrate the positive effect of Mo-doping and nanostructuration on the overall N2 fixation performance. Ammonia production rates are found to be dependent on the Mo-doping loading. 5Mo-TiO2 delivers the highest NH4+ yield rate (ca. 105.3 μmol g-1 L-1 h-1) with an outstanding 90% selectivity, which is almost four times higher than that obtained over bare TiO2. The wide range of advance characterization techniques used in this work reveals that Mo-doping enhances charge-transfer processes and carriers lifetime as a consequence of the creation of new intra band gap states in Mo-doped TiO2 NCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸是海蓝色关注了科研通微信公众号
刚刚
南亭完成签到,获得积分10
刚刚
Orange应助o10采纳,获得10
1秒前
1秒前
1秒前
小王发布了新的文献求助10
2秒前
初吻还在完成签到,获得积分10
3秒前
MADKAI发布了新的文献求助10
3秒前
Asss完成签到,获得积分10
3秒前
3秒前
时光友岸完成签到,获得积分10
4秒前
5秒前
昭昭完成签到,获得积分10
5秒前
niu1完成签到,获得积分10
6秒前
铃兰完成签到,获得积分10
6秒前
尘尘完成签到,获得积分10
6秒前
7秒前
yan完成签到,获得积分20
7秒前
7秒前
小鹿斑比完成签到 ,获得积分10
8秒前
洛洛完成签到 ,获得积分10
8秒前
浮华乱世完成签到 ,获得积分10
8秒前
otaro完成签到,获得积分10
8秒前
万能图书馆应助zsqqqqq采纳,获得10
8秒前
领导范儿应助zhonghbush采纳,获得10
9秒前
reck发布了新的文献求助10
9秒前
舒服的鱼完成签到 ,获得积分10
9秒前
9秒前
WLL完成签到,获得积分10
9秒前
9秒前
罗mian发布了新的文献求助10
9秒前
轻松的雨旋完成签到,获得积分10
10秒前
星辰大海应助小宇采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
11秒前
zxk完成签到,获得积分10
11秒前
11秒前
12秒前
xjx完成签到 ,获得积分10
12秒前
酷炫大树发布了新的文献求助10
13秒前
orixero应助凶狠的盼柳采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672