奥恩斯坦-乌伦贝克过程
数学
估计员
极小极大
应用数学
Lasso(编程语言)
常量(计算机编程)
趋同(经济学)
收敛速度
数学优化
统计
随机过程
计算机科学
计算机网络
频道(广播)
万维网
经济
程序设计语言
经济增长
作者
Niklas Dexheimer,Claudia Strauch
出处
期刊:Bernoulli
[Chapman and Hall London]
日期:2023-11-08
卷期号:30 (1)
被引量:1
摘要
We investigate the problem of estimating the drift parameter of a high-dimensional Lévy-driven Ornstein–Uhlenbeck process under sparsity constraints. It is shown that both Lasso and Slope estimators achieve the minimax optimal rate of convergence (up to numerical constants), for tuning parameters chosen independently of the confidence level, which improves the previously obtained results for standard Ornstein–Uhlenbeck processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI