摘要
SmallEarly View 2306545 Research Article Hierarchical Porous Amidoximated Metal–Organic Framework for Highly Efficient Uranium Extraction Jin Li, Jin Li Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorKai Tuo, Kai Tuo Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorCongbin Fan, Congbin Fan Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorGang Liu, Gang Liu Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorShouzhi Pu, Corresponding Author Shouzhi Pu [email protected] YuZhang Normal University, Nanchang, 330013 P. R. China E-mail: [email protected]; [email protected]Search for more papers by this authorZhijian Li, Corresponding Author Zhijian Li [email protected] orcid.org/0000-0002-3837-7001 Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China E-mail: [email protected]; [email protected]Search for more papers by this author Jin Li, Jin Li Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorKai Tuo, Kai Tuo Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorCongbin Fan, Congbin Fan Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorGang Liu, Gang Liu Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. ChinaSearch for more papers by this authorShouzhi Pu, Corresponding Author Shouzhi Pu [email protected] YuZhang Normal University, Nanchang, 330013 P. R. China E-mail: [email protected]; [email protected]Search for more papers by this authorZhijian Li, Corresponding Author Zhijian Li [email protected] orcid.org/0000-0002-3837-7001 Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China E-mail: [email protected]; [email protected]Search for more papers by this author First published: 16 November 2023 https://doi.org/10.1002/smll.202306545Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract With the rapid development of industry and technology, high-efficiency extraction of uranium from seawater is a research hotspot from the aspect of nuclear energy development. Herein, a new amidoximated metal–organic framework (UiO-66-DAMN-AO) constructed through a novel organic ligand of 2-diaminomaleonitrile-terephthalic acid (BDC-DAMN) is designed via one-step post-synthetic methods (PSM), which possess the merit of abundant multiaffinity sites, large specific surface area, and unique porous structure for efficient uranium extraction. Adopting one-step PSM can alleviate the destruction of structural stability and the reduction of the conversion rate of amidoxime groups. Meanwhile, introducing the BDC-DAMN ligand with abundant multiaffinity sites endow UiO-66-DAMN-AO with excellent adsorption ability (Qm = 426.3 mg g−1) and selectivity. Interestingly, the UiO-66-DAMN-AO has both micropores and mesopores, which may be attributed to the partial etching of UiO-66-DAMN-AO during the amidoximation. The presence of mesopores improves the mass transfer rate of UiO-66-DAMN-AO and provides more exposed active sites, favoring the adsorption of uranium on UiO-66-DAMN-AO. Thus, this study provides a feasible strategy for modifying metal–organic framework (MOFs) with plentiful amidoxime groups and the promising prospect for MOF-based materials to adsorb uranium from ocean. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available in the supplementary material of this article. Supporting Information Filename Description smll202306545-sup-0001-SuppMat.pdf2 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1R. Li, H. Wang, J. Yan, R. Fu, B. Wang, C. Jiang, Y. Wang, T. Xu, Water Res. 2023, 240, 120079. 10.1016/j.watres.2023.120079 CASPubMedGoogle Scholar 2T. Liu, A. Gu, T. Wei, M. Chen, X. Guo, S. Tang, Y. Yuan, N. Wang, Small 2023, 19, 2208002. 10.1002/smll.202208002 CASGoogle Scholar 3H. Gomaa, M. A. Shenashen, M. F. Cheira, K. Sueki, T. A. Seaf El-Nasr, M. M. Selim, S. A. El-Safty, Chem. Eng. J. 2023, 461, 142014. 10.1016/j.cej.2023.142014 CASWeb of Science®Google Scholar 4J. Jian, H. Kang, D. Yu, X. Qiao, Y. Liu, Y. Li, W. Qin, X. Wu, Small 2023, 19, 2207378. 10.1002/smll.202207378 CASWeb of Science®Google Scholar 5J. Gan, L. Zhang, Q. Wang, Q. Xin, E. Hu, Z. Lei, H. Wang, H. Wang, Desalination 2023, 545, 116154. 10.1016/j.desal.2022.116154 CASWeb of Science®Google Scholar 6T. Li, X. Lin, Z. Zhang, L. Yang, Y. Qian, L. Fu, S. Zhou, W. Chen, Q. Wang, X. Li, X.-Y. Kong, H. Xiao, L. Jiang, L. Wen, Adv. Funct. Mater. 2023, 33, 2212819. 10.1002/adfm.202212819 CASWeb of Science®Google Scholar 7Y. Wang, Y. Wang, M. Song, S. Chen, J. Wei, J. You, B. Zhou, S. Wang, Angew. Chem., Int. Ed. 2023, 62, e202217601. 10.1002/anie.202217601 CASPubMedWeb of Science®Google Scholar 8Y. Xu, J. Zhu, H. Zhang, Q. Liu, J. Liu, R. Chen, J. Yu, J. Wang, J. Mater. Chem. A 2023, 11, 11264. 10.1039/D3TA01535A CASWeb of Science®Google Scholar 9X. Zhao, Y. Gong, K. Gao, Y. Wang, H. Y. Yang, Chem. Eng. J. 2023, 474, 145975. 10.1016/j.cej.2023.145975 CASGoogle Scholar 10X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 2022, 450, 138454. 10.1016/j.cej.2022.138454 CASGoogle Scholar 11W. Sun, L. Feng, J. Zhang, K. Lin, H. Wang, B. Yan, T. Feng, M. Cao, T. Liu, Y. Yuan, N. Wang, Adv. Sci. 2022, 9, 2105008. 10.1002/advs.202105008 CASGoogle Scholar 12K. Yu, L. Tang, X. Cao, Z. Guo, Y. Zhang, N. Li, C. Dong, X. Gong, T. Chen, R. He, W. Zhu, Adv. Funct. Mater. 2022, 32, 2200315. 10.1002/adfm.202200315 CASWeb of Science®Google Scholar 13T. Liu, Z. Li, X. Zhang, H. Tan, Z. Chen, J. Wu, J. Chen, H. Qiu, Anal. Chem. 2021, 93, 16175. 10.1021/acs.analchem.1c03982 CASPubMedWeb of Science®Google Scholar 14F. Chen, M. Lv, Y. Ye, S. Miao, X. Tang, Y. Liu, B. Liang, Z. Qin, Y. Chen, Z. He, Y. Wang, Chem. Eng. J. 2022, 434, 134708. 10.1016/j.cej.2022.134708 CASGoogle Scholar 15D. Zhang, L. Fang, L. Liu, B. Zhao, B. Hu, S. Yu, X. Wang, Sep. Purif. Technol. 2023, 320, 124204. 10.1016/j.seppur.2023.124204 CASGoogle Scholar 16Y. Tian, L. Liu, F. Ma, X. Zhu, H. Dong, C. Zhang, F. Zhao, J. Hazard. Mater. 2021, 419, 126538. 10.1016/j.jhazmat.2021.126538 CASPubMedGoogle Scholar 17S. Li, Z. Niu, D. Pan, Z. Cui, H. Shang, J. Lian, W. Wu, Chin. Chem. Lett. 2022, 33, 3581. 10.1016/j.cclet.2022.03.043 CASWeb of Science®Google Scholar 18D. Ye, Q. Gao, T. Li, X. Wu, Y. Wu, Desalination 2023, 553, 116461. 10.1016/j.desal.2023.116461 CASGoogle Scholar 19C. T. Yavuz, Chem 2021, 7, 276. 10.1016/j.chempr.2021.01.011 CASWeb of Science®Google Scholar 20Y. Yuan, Y. Yang, X. Ma, Q. Meng, L. Wang, S. Zhao, G. Zhu, Adv. Mater. 2018, 30, 1706507. 10.1002/adma.201706507 PubMedWeb of Science®Google Scholar 21S. Khan, R. Anjum, M. Bilal, Environ. Technol. Innovation 2021, 22, 101503. 10.1016/j.eti.2021.101503 CASWeb of Science®Google Scholar 22D. Mei, L. Liu, B. Yan, Coord. Chem. Rev. 2023, 475, 214917. 10.1016/j.ccr.2022.214917 CASWeb of Science®Google Scholar 23J. Li, R. Yao, B. Deng, Z. Li, K. Tuo, C. Fan, G. Liu, S. Pu, Chem. Eng. J. 2023, 464, 142626. 10.1016/j.cej.2023.142626 CASGoogle Scholar 24W.-R. Cui, F.-F. Li, R.-H. Xu, C.-R. Zhang, X.-R. Chen, R.-H. Yan, R.-P. Liang, J.-D. Qiu, Angew. Chem., Int. Ed. 2020, 59, 17684. 10.1002/anie.202007895 CASPubMedWeb of Science®Google Scholar 25Y. Peng, Y. Zhang, Q. Tan, H. Huang, ACS Appl. Mater. Interfaces 2021, 13, 27049. 10.1021/acsami.1c04892 CASPubMedWeb of Science®Google Scholar 26K. Xuan, J. Wang, Z. Gong, X. Wang, J. Li, Y. Guo, Z. Sun, J. Hazard. Mater. 2022, 426, 127834. 10.1016/j.jhazmat.2021.127834 CASPubMedGoogle Scholar 27D. Mei, L. Liu, H. Li, Y. Wang, F. Ma, C. Zhang, H. Dong, J. Hazard. Mater. 2022, 422, 126872. 10.1016/j.jhazmat.2021.126872 CASPubMedWeb of Science®Google Scholar 28D. Mei, H. Li, L. Liu, L. Jiang, C. Zhang, X. Wu, H. Dong, F. Ma, Chem. Eng. J. 2021, 425, 130468. 10.1016/j.cej.2021.130468 CASWeb of Science®Google Scholar 29L. Ma, J. Gao, C. Huang, X. Xu, L. Xu, R. Ding, H. Bao, Z. Wang, G. Xu, Q. Li, P. Deng, H. Ma, ACS Appl. Mater. Interfaces 2021, 13, 57831. 10.1021/acsami.1c18625 CASPubMedWeb of Science®Google Scholar 30J. Chen, K. Li, J. Yang, J. Gu, ChemComm 2022, 58, 10028. CASGoogle Scholar 31J. Cui, X. Xu, L. Yang, C. Chen, J. Qian, X. Chen, D. Sun, Chem. Eng. J. 2020, 395, 125174. 10.1016/j.cej.2020.125174 CASWeb of Science®Google Scholar 32Y. Ma, A. Li, C. Wang, Chem. Eng. J. 2023, 455, 140687. 10.1016/j.cej.2022.140687 CASGoogle Scholar 33S. Mollick, S. Saurabh, Y. D. More, S. Fajal, M. M. Shirolkar, W. Mandal, S. K. Ghosh, Energy Environ. Sci. 2022, 15, 3462. 10.1039/D2EE01199A CASWeb of Science®Google Scholar 34J. Xiao, S. Lin, N. Zhang, X. Hu, ACS Nano 2023, 17, 1597. 10.1021/acsnano.2c11341 CASWeb of Science®Google Scholar 35J. Chen, B. Zhang, L. Qi, Y. Pei, R. Nie, P. Heintz, X. Luan, Z. Bao, Q. Yang, Q. Ren, Z. Zhang, W. Huang, ACS Appl. Mater. Interfaces 2020, 12, 23002. 10.1021/acsami.0c05344 CASPubMedWeb of Science®Google Scholar 36Y. Meng, Y. Wang, L. Liu, F. Ma, C. Zhang, H. Dong, Sep. Purif. Technol. 2022, 291, 120946. 10.1016/j.seppur.2022.120946 CASGoogle Scholar 37J.-M. Liu, X.-H. Yin, T. Liu, J. Taiwan Inst. Chem. Eng. 2019, 95, 416. 10.1016/j.jtice.2018.08.012 CASWeb of Science®Google Scholar 38F. Liu, Z. Hu, M. Xiang, B. Hu, Appl. Surf. Sci. 2022, 601, 154227. 10.1016/j.apsusc.2022.154227 CASGoogle Scholar 39L. Liu, Y. Fang, Y. Meng, X. Wang, F. Ma, C. Zhang, H. Dong, Desalination 2020, 478, 114300. 10.1016/j.desal.2019.114300 CASWeb of Science®Google Scholar 40L. Yang, H. Xiao, Y. Qian, X. Zhao, X.-Y. Kong, P. Liu, W. Xin, L. Fu, L. Jiang, L. Wen, Nat. Sustain. 2022, 5, 71. 10.1038/s41893-021-00792-6 Web of Science®Google Scholar 41X. Cao, K. Yu, Y. Zhang, N. Li, P. Wang, L. Zhou, X. Gong, H. Wang, F. Yang, W. Zhu, R. He, ACS Appl. Mater. Interfaces 2023, 15, 1063. 10.1021/acsami.2c17849 CASPubMedGoogle Scholar 42Y. Pu, T. Qiang, L. Ren, Desalination 2022, 531, 115721. 10.1016/j.desal.2022.115721 CASGoogle Scholar 43Q. Xin, Q. Wang, J. Gan, Z. Lei, E. Hu, H. Wang, H. Wang, Carbohydr. Polym. 2023, 300, 120270. 10.1016/j.carbpol.2022.120270 CASPubMedWeb of Science®Google Scholar 44F. Li, X. Li, P. Cui, Y. Sun, Environ. Sci.: Nano 2018, 5, 2000. 10.1039/C8EN00583D CASWeb of Science®Google Scholar 45Y. Xie, C. Chen, X. Ren, X. Wang, H. Wang, X. Wang, Prog. Mater. Sci. 2019, 103, 180. 10.1016/j.pmatsci.2019.01.005 CASWeb of Science®Google Scholar 46X. Xu, H. Zhang, J. Ao, L. Xu, X. Liu, X. Guo, J. Li, L. Zhang, Q. Li, X. Zhao, B. Ye, D. Wang, F. Shen, H. Ma, Energy Environ. Sci. 2019, 12, 1979. 10.1039/C9EE00626E CASWeb of Science®Google Scholar 47N. Tang, J. Liang, C. Niu, H. Wang, Y. Luo, W. Xing, S. Ye, C. Liang, H. Guo, J. Guo, Y. Zhang, G. Zeng, J. Mater. Chem. A 2020, 8, 7588. 10.1039/C9TA14082D CASWeb of Science®Google Scholar 48L. Feng, H. Wang, T. Feng, B. Yan, Q. Yu, J. Zhang, Z. Guo, Y. Yuan, C. Ma, T. Liu, N. Wang, Angew. Chem., Int. Ed. 2022, 61, e202101015. 10.1002/anie.202101015 CASPubMedWeb of Science®Google Scholar 49H. Li, J. Sun, S. Qin, Y. Song, Z. Liu, P. Yang, S. Li, C. Liu, C. Shen, Adv. Funct. Mater. 2023, 33, 2301773. 10.1002/adfm.202301773 CASGoogle Scholar 50J. Gan, L. Zhang, Q. Wang, Q. Xin, Y. Xiong, E. Hu, Z. Lei, H. Wang, H. Wang, Int. J. Biol. Macromol. 2023, 238, 124074. 10.1016/j.ijbiomac.2023.124074 CASPubMedGoogle Scholar 51L. Zhang, M. Qie, J. Su, S. Zhang, J. Zhou, J. Li, Y. Wang, S. Yang, S. Wang, J. Li, G. Wu, J.-Q. Wang, J Synchrotron Radiat 2018, 25, 514. 10.1107/S160057751800067X CASPubMedWeb of Science®Google Scholar 52Q. Sun, B. Aguila, J. Perman, A. S. Ivanov, V. S. Bryantsev, L. D. Earl, C. W. Abney, L. Wojtas, S. Ma, Nat. Commun. 2018, 9, 1644. 10.1038/s41467-018-04032-y PubMedWeb of Science®Google Scholar 53Y. Zhao, J. Li, L. Zhao, S. Zhang, Y. Huang, X. Wu, X. Wang, Chem. Eng. J. 2014, 235, 275. 10.1016/j.cej.2013.09.034 CASWeb of Science®Google Scholar 54T. Liu, S. Tang, T. Wei, M. Chen, Z. Xie, R. Zhang, Y. Liu, N. Wang, Cell Rep. Phys. Sci. 2022, 3, 100892. 10.1016/j.xcrp.2022.100892 CASGoogle Scholar 55X. Chen, Y. Lin, W. Li, G. Zhang, Y. Wang, J. Ma, Z. Meng, S. Wu, S. Wang, X. Zhang, H. Pang, Sustainable Mater. Technol. 2022, 34, e00521. 10.1016/j.susmat.2022.e00521 CASGoogle Scholar Early ViewOnline Version of Record before inclusion in an issue2306545 ReferencesRelatedInformation