Wearable Leg Movement Monitoring System for High-Precision Real-Time Metabolic Energy Estimation and Motion Recognition

可穿戴计算机 计算机科学 人工智能 可穿戴技术 运动(物理) 智能手表 运动学 计算机视觉 模拟 嵌入式系统 经典力学 物理
作者
Jinfeng Yuan,Yu‐Zhong Zhang,Shiqiang Liu,Rong Zhu
出处
期刊:Research [AAAS00]
卷期号:6 被引量:9
标识
DOI:10.34133/research.0214
摘要

Comprehensive and quantitative assessment of human physical activity in daily life is valuable for healthcare, especially for those who suffer from obesity and neurological disorders or are at high risk of dementia. Common wearable devices, e.g., smartwatches, are insufficient and inaccurate for monitoring highly dynamic limb movements and assessing human motion. Here, we report a new wearable leg movement monitoring system incorporating a custom-made motion sensor with machine learning algorithm to perceive human motion accurately and comprehensively during diverse walking and running actions. The system enables real-time multimodal perceptions of personal identity, motion state, locomotion speed, and energy expenditure for wearers. A general law of extracting real-time metabolic energy from leg movements is verified although individual gaits show differences. In addition, we propose a novel sensing configuration combining unilateral lower leg movement velocity with its angular rate to achieve high accuracy and good generalizability while simplifying the wearable system. Advanced performances in personal identification (accuracy of 98.7%) and motion-state recognition (accuracy of 93.7%) are demonstrated. The wearable system also exhibites high-precision real-time estimations of locomotion speed (error of 3.04% to 9.68%) and metabolic energy (error of 4.18% to 14.71%) for new subjects across various time-varying conditions. The wearable system allows reliable leg movement monitoring and quantitative assessment of bodily kinematic and kinetic behaviors during daily activities, as well as safe identity authentication by gait parameters, which would greatly facilitate smart life, personal healthcare, and rehabilitation training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VuuVuu发布了新的文献求助10
1秒前
1秒前
哈喽沃德应助青4096采纳,获得10
2秒前
大番茄发布了新的文献求助30
2秒前
Wang发布了新的文献求助10
2秒前
慕青应助zhanghan采纳,获得10
2秒前
爆米花应助pilot采纳,获得10
3秒前
5秒前
7秒前
鑫鑫发布了新的文献求助10
7秒前
8秒前
汉堡包应助溦昼采纳,获得10
9秒前
10秒前
11秒前
ttt完成签到,获得积分10
11秒前
ersan发布了新的文献求助10
12秒前
PGL发布了新的文献求助10
13秒前
xintaihencha发布了新的文献求助10
13秒前
infer1024完成签到 ,获得积分10
14秒前
14秒前
14秒前
cc发布了新的文献求助10
14秒前
科研通AI5应助凯哥采纳,获得10
14秒前
拾伍发布了新的文献求助10
15秒前
panda发布了新的文献求助10
17秒前
17秒前
17秒前
科研通AI5应助lylyzhl采纳,获得10
18秒前
普鲁斯特发布了新的文献求助10
21秒前
Hello应助liming采纳,获得10
21秒前
三国杀校老弟完成签到,获得积分10
22秒前
溦昼发布了新的文献求助10
23秒前
24秒前
24秒前
lyric完成签到,获得积分10
25秒前
852应助溦昼采纳,获得10
27秒前
28秒前
28秒前
29秒前
Jodie发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496762
求助须知:如何正确求助?哪些是违规求助? 3081490
关于积分的说明 9167594
捐赠科研通 2774421
什么是DOI,文献DOI怎么找? 1522434
邀请新用户注册赠送积分活动 705995
科研通“疑难数据库(出版商)”最低求助积分说明 703178