蛋白质工程
聚酮
计算生物学
生物传感器
合成生物学
定向进化
连接器
领域(数学分析)
异源的
蛋白质结构域
定向分子进化
小分子
生物
化学
计算机科学
生物化学
酶
基因
突变体
生物合成
数学分析
数学
操作系统
作者
Elias Englund,Matthias Schmidt,Alberto A. Nava,Sarah H. Klass,Leah Keiser,Qingyun Dan,Leonard Katz,Satoshi Yuzawa,Jay D. Keasling
标识
DOI:10.1038/s41467-023-40464-x
摘要
Abstract Type I modular polyketide synthases (PKSs) are multi-domain enzymes functioning like assembly lines. Many engineering attempts have been made for the last three decades to replace, delete and insert new functional domains into PKSs to produce novel molecules. However, inserting heterologous domains often destabilize PKSs, causing loss of activity and protein misfolding. To address this challenge, here we develop a fluorescence-based solubility biosensor that can quickly identify engineered PKSs variants with minimal structural disruptions. Using this biosensor, we screen a library of acyltransferase (AT)-exchanged PKS hybrids with randomly assigned domain boundaries, and we identify variants that maintain wild type production levels. We then probe each position in the AT linker region to determine how domain boundaries influence structural integrity and identify a set of optimized domain boundaries. Overall, we have successfully developed an experimentally validated, high-throughput method for making hybrid PKSs that produce novel molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI