隔音
声学
声音传输等级
材料科学
声阻抗
吸收(声学)
频带
声波
低频
有限元法
工程类
物理
电气工程
电信
超声波传感器
结构工程
天线(收音机)
作者
Xiao Liang,Haofeng Liang,Jiaming Chu,Zhèn Yáng,Zhuo Zhou,Nansha Gao,Siwen Zhang,Guojian Zhou,Congfang Hu
标识
DOI:10.1177/10775463231194702
摘要
Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilayer micro-perforated plate in the full frequency band and the sound insulation effect of the acoustic black hole in the low frequency and the excellent sound absorption effect in the high frequency, the excellent sound control effect of 600–3150 Hz absorption coefficient greater than 0.8 and 100–3150 Hz sound transmission loss greater than 50 dB is achieved. The acoustic properties of different components and different acoustic black hole outlet were evaluated by finite element method, and the principles of sound absorption and insulation of the composite structure were elaborated. Finally, the results of finite element method are verified by impedance tube experiments. This work can make further progress in elucidating the acoustic properties of the ABH and open up new avenues in the control of ultra-low and ultra-wide frequency acoustic waves.
科研通智能强力驱动
Strongly Powered by AbleSci AI