Quantifying the Efficacy of Magnetic Nanoparticles for MRI and Hyperthermia Applications via Machine Learning Methods

材料科学 纳米颗粒 磁性纳米粒子 机器学习 磁热疗 人工智能 纳米技术 计算机科学 磁共振成像 热疗 比吸收率 超参数 生物医学 纳米磁铁 热疗 磁化 生物信息学 物理 磁场 医学 天线(收音机) 电信 放射科 气象学 量子力学 生物
作者
Pavel Kim,Nikita Serov,Aleksandra S. Falchevskaya,И. Д. Шабалкин,Andrei Dmitrenko,Daniil V. Kladko,Vladimir V. Vinogradov
出处
期刊:Small [Wiley]
卷期号:19 (48) 被引量:5
标识
DOI:10.1002/smll.202303522
摘要

Magnetic nanoparticles are a prospective class of materials for use in biomedicine as agents for magnetic resonance imagining (MRI) and hyperthermia treatment. However, synthesis of nanoparticles with high efficacy is resource-intensive experimental work. In turn, the use of machine learning (ML) methods is becoming useful in materials design and serves as a great approach to designing nanomagnets for biomedicine. In this work, for the first time, an ML-based approach is developed for the prediction of main parameters of material efficacy, i.e., specific absorption rate (SAR) for hyperthermia and r1 /r2 relaxivities in MRI, with parameters of nanoparticles as well as experimental conditions as descriptors. For that, a unique database with more than 980 magnetic nanoparticles collected from scientific articles is assembled. Using this data, several tree-based ensemble models are trained to predict SAR, r1 and r2 relaxivity. After hyperparameter optimization, models reach performances of R2 = 0.86, R2 = 0.78, and R2 = 0.75, respectively. Testing the models on samples unseen during the training shows no performance drops. Finally, DiMag, an open access resource created to guide synthesis of novel nanosized magnets for MRI and hyperthermia treatment with machine learning and boost development of new biomedical agents, is developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cua完成签到,获得积分10
刚刚
BANG完成签到,获得积分10
刚刚
狄语蕊完成签到,获得积分10
刚刚
OccupyMars2025关注了科研通微信公众号
1秒前
朱凌娇发布了新的文献求助10
1秒前
珍珠糖发布了新的文献求助10
1秒前
优雅盼海发布了新的文献求助10
1秒前
沉淀完成签到,获得积分10
2秒前
科研助手6应助岳凯采纳,获得10
2秒前
kevin完成签到 ,获得积分10
2秒前
3秒前
3秒前
CCCCPUTA完成签到,获得积分10
4秒前
Haonan完成签到,获得积分10
4秒前
Refuel完成签到,获得积分10
4秒前
终梦发布了新的文献求助20
5秒前
积极的如之完成签到,获得积分10
5秒前
5秒前
xueshufengbujue完成签到,获得积分10
5秒前
秋慕蕊发布了新的文献求助10
6秒前
ColinWine完成签到,获得积分10
6秒前
cua发布了新的文献求助20
7秒前
隐形的乐枫完成签到,获得积分10
8秒前
elidan发布了新的文献求助10
8秒前
李健应助Fantansy采纳,获得10
8秒前
樱sky完成签到,获得积分10
8秒前
8秒前
林屿溪完成签到,获得积分10
8秒前
Jupiter完成签到,获得积分10
8秒前
Henry完成签到,获得积分10
8秒前
9秒前
完美世界应助珍珠糖采纳,获得10
9秒前
cxt驳回了爆米花应助
9秒前
11秒前
11秒前
科研互通完成签到,获得积分10
11秒前
阿容发布了新的文献求助10
12秒前
所所应助感动水杯采纳,获得10
12秒前
万能图书馆应助优雅盼海采纳,获得10
13秒前
鹤轸完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259