Integrated analysis of single‐cell sequencing and weighted co‐expression network identifies a novel signature based on cellular senescence‐related genes to predict prognosis in glioblastoma

衰老 生物 列线图 转录组 基因 计算生物学 基因共表达网络 肿瘤科 基因表达 生物信息学 遗传学 医学 基因本体论
作者
Qingquan Bao,Xuebin Yu,Xuchen Qi
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (2): 643-656 被引量:2
标识
DOI:10.1002/tox.23921
摘要

Abstract Background Glioblastoma (GBM) is a highly aggressive cancer with heavy mortality rates and poor prognosis. Cellular senescence exerts a pivotal influence on the development and progression of various cancers. However, the underlying effect of cellular senescence on the outcomes of patients with GBM remains to be elucidated. Methods Transcriptome RNA sequencing data with clinical information and single‐cell sequencing data of GBM cases were obtained from CGGA, TCGA, and GEO (GSE84465) databases respectively. Single‐sample gene set enrichment analysis (ssGSEA) analysis was utilized to calculate the cellular senescence score. WGCNA analysis was employed to ascertain the key gene modules and identify differentially expressed genes (DEGs) associated with the cellular senescence score in GBM. The prognostic senescence‐related risk model was developed by least absolute shrinkage and selection operator (LASSO) regression analyses. The immune infiltration level was calculated by microenvironment cell populations counter (MCPcounter), ssGSEA, and xCell algorithms. Potential anti‐cancer small molecular compounds of GBM were estimated by “oncoPredict” R package. Results A total of 150 DEGs were selected from the pink module through WGCNA analysis. The risk‐scoring model was constructed based on 5 cell senescence‐associated genes (CCDC151, DRC1, C2orf73, CCDC13, and WDR63). Patients in low‐risk group had a better prognostic value compared to those in high‐risk group. The nomogram exhibited excellent predictive performance in assessing the survival outcomes of patients with GBM. Top 30 potential anti‐cancer small molecular compounds with higher drug sensitivity scores were predicted. Conclusion Cellular senescence‐related genes and clusters in GBM have the potential to provide valuable insights in prognosis and guide clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助唐ZY123采纳,获得30
刚刚
Owen应助傻丢采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
1huiqina发布了新的文献求助30
1秒前
1秒前
1秒前
momo发布了新的文献求助10
3秒前
4秒前
sunliying完成签到,获得积分10
5秒前
5秒前
希望天下0贩的0应助卿卿采纳,获得10
6秒前
小野完成签到,获得积分20
7秒前
8秒前
科研通AI5应助十一号采纳,获得10
10秒前
lily发布了新的文献求助10
11秒前
11秒前
冯嘉烨完成签到,获得积分10
11秒前
13秒前
13秒前
hyhyhyhy完成签到,获得积分10
13秒前
Quentin9998发布了新的文献求助10
14秒前
14秒前
yolo完成签到,获得积分10
14秒前
16秒前
syslby完成签到,获得积分10
19秒前
科研通AI6应助圆圆努力中采纳,获得10
19秒前
20秒前
20秒前
东郭凝蝶完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助200
21秒前
大模型应助XH_L采纳,获得10
21秒前
liberation完成签到 ,获得积分0
21秒前
22秒前
lily完成签到,获得积分10
23秒前
23秒前
海底会飞的鱼完成签到,获得积分10
23秒前
朴素的睫毛完成签到,获得积分20
24秒前
25秒前
25秒前
桐桐应助Li采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875