Integrated analysis of single‐cell sequencing and weighted co‐expression network identifies a novel signature based on cellular senescence‐related genes to predict prognosis in glioblastoma

衰老 生物 列线图 转录组 基因 计算生物学 基因共表达网络 肿瘤科 基因表达 生物信息学 遗传学 医学 基因本体论
作者
Qingquan Bao,Xuebin Yu,Xuchen Qi
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (2): 643-656 被引量:2
标识
DOI:10.1002/tox.23921
摘要

Abstract Background Glioblastoma (GBM) is a highly aggressive cancer with heavy mortality rates and poor prognosis. Cellular senescence exerts a pivotal influence on the development and progression of various cancers. However, the underlying effect of cellular senescence on the outcomes of patients with GBM remains to be elucidated. Methods Transcriptome RNA sequencing data with clinical information and single‐cell sequencing data of GBM cases were obtained from CGGA, TCGA, and GEO (GSE84465) databases respectively. Single‐sample gene set enrichment analysis (ssGSEA) analysis was utilized to calculate the cellular senescence score. WGCNA analysis was employed to ascertain the key gene modules and identify differentially expressed genes (DEGs) associated with the cellular senescence score in GBM. The prognostic senescence‐related risk model was developed by least absolute shrinkage and selection operator (LASSO) regression analyses. The immune infiltration level was calculated by microenvironment cell populations counter (MCPcounter), ssGSEA, and xCell algorithms. Potential anti‐cancer small molecular compounds of GBM were estimated by “oncoPredict” R package. Results A total of 150 DEGs were selected from the pink module through WGCNA analysis. The risk‐scoring model was constructed based on 5 cell senescence‐associated genes (CCDC151, DRC1, C2orf73, CCDC13, and WDR63). Patients in low‐risk group had a better prognostic value compared to those in high‐risk group. The nomogram exhibited excellent predictive performance in assessing the survival outcomes of patients with GBM. Top 30 potential anti‐cancer small molecular compounds with higher drug sensitivity scores were predicted. Conclusion Cellular senescence‐related genes and clusters in GBM have the potential to provide valuable insights in prognosis and guide clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aluhaer应助jiang采纳,获得10
刚刚
Alexgui完成签到,获得积分20
1秒前
xiaog完成签到,获得积分10
1秒前
元谷雪发布了新的文献求助10
2秒前
小蘑菇应助Hu采纳,获得10
2秒前
犹豫梨愁完成签到,获得积分10
2秒前
玉婷完成签到,获得积分10
2秒前
3秒前
5秒前
和谐尔蓝发布了新的文献求助10
6秒前
阳光的虔纹完成签到 ,获得积分10
6秒前
top发布了新的文献求助10
8秒前
玉婷发布了新的文献求助30
8秒前
科研通AI2S应助Alexgui采纳,获得10
9秒前
深情安青应助QQ采纳,获得10
9秒前
10秒前
10秒前
藜誌完成签到,获得积分10
12秒前
Linda完成签到,获得积分10
13秒前
chi完成签到,获得积分10
18秒前
浮游应助李闻闻采纳,获得10
20秒前
22秒前
顺其自然完成签到 ,获得积分10
23秒前
早早发布了新的文献求助10
24秒前
GEE完成签到,获得积分10
24秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
25秒前
KKK完成签到,获得积分10
25秒前
黄慶玲发布了新的文献求助20
25秒前
大葡萄发布了新的文献求助10
26秒前
传奇3应助Alice采纳,获得10
26秒前
大个应助chi采纳,获得10
26秒前
27秒前
28秒前
29秒前
Young完成签到,获得积分10
29秒前
29秒前
菠菜发布了新的文献求助10
30秒前
31秒前
大花2完成签到,获得积分10
31秒前
欣喜访文完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178195
求助须知:如何正确求助?哪些是违规求助? 4366550
关于积分的说明 13595426
捐赠科研通 4216880
什么是DOI,文献DOI怎么找? 2312723
邀请新用户注册赠送积分活动 1311569
关于科研通互助平台的介绍 1259854