Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes

计算机科学 人工智能 计算生物学 深度学习 机器学习 化学 生物
作者
Rahul Nikam,Kumar Yugandhar,M. Michael Gromiha
出处
期刊:Biochimica Et Biophysica Acta - Proteins And Proteomics [Elsevier]
卷期号:1871 (6): 140948-140948 被引量:8
标识
DOI:10.1016/j.bbapap.2023.140948
摘要

Protein-protein interactions (PPIs) play a critical role in various biological processes. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董不懂完成签到,获得积分10
刚刚
哎嘿应助认真科研采纳,获得10
刚刚
吴梅应助认真科研采纳,获得10
刚刚
泡芙完成签到 ,获得积分10
刚刚
yuan1yuan2完成签到 ,获得积分10
1秒前
迷人的千易完成签到,获得积分10
3秒前
Akim应助chu采纳,获得10
3秒前
4秒前
wanci应助科研通管家采纳,获得30
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
小星星应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
Wells应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
ShowMaker应助科研通管家采纳,获得10
6秒前
不配.应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
小墨应助科研通管家采纳,获得10
6秒前
小马哥完成签到,获得积分10
6秒前
慕青应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
Wells应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760