PromptMTopic: Unsupervised Multimodal Topic Modeling of Memes using Large Language Models

计算机科学 模式 主题模型 适度 社会化媒体 意义(存在) 自然语言处理 人工智能 万维网 心理学 社会学 机器学习 社会科学 心理治疗师
作者
Nirmalendu Prakash,H. C. Wang,Nguyen Khoi Hoang,Ming Shan Hee,Roy Ka-Wei Lee
标识
DOI:10.1145/3581783.3613836
摘要

The proliferation of social media has given rise to a new form of communication: memes. Memes are multimodal and often contain a combination of text and visual elements that convey meaning, humor, and cultural significance. While meme analysis has been an active area of research, little work has been done on unsupervised multimodal topic modeling of memes, which is important for content moderation, social media analysis, and cultural studies. We propose \textsf{PromptMTopic}, a novel multimodal prompt-based model designed to learn topics from both text and visual modalities by leveraging the language modeling capabilities of large language models. Our model effectively extracts and clusters topics learned from memes, considering the semantic interaction between the text and visual modalities. We evaluate our proposed model through extensive experiments on three real-world meme datasets, which demonstrate its superiority over state-of-the-art topic modeling baselines in learning descriptive topics in memes. Additionally, our qualitative analysis shows that \textsf{PromptMTopic} can identify meaningful and culturally relevant topics from memes. Our work contributes to the understanding of the topics and themes of memes, a crucial form of communication in today's society.\\ \red{\textbf{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}}
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjr完成签到 ,获得积分10
2秒前
研友_LwlAgn完成签到,获得积分10
6秒前
陈昊完成签到,获得积分10
14秒前
15秒前
tian发布了新的文献求助10
17秒前
20秒前
20秒前
龙舞星完成签到,获得积分10
21秒前
22秒前
王涉发布了新的文献求助10
24秒前
普鲁卡因发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
柚子完成签到,获得积分10
31秒前
32秒前
马儿饿了要吃草完成签到,获得积分10
32秒前
34秒前
sudor123456完成签到,获得积分10
39秒前
NXK发布了新的文献求助10
39秒前
打打应助普鲁卡因采纳,获得10
42秒前
44秒前
lii完成签到,获得积分10
44秒前
jiaolulu发布了新的文献求助10
50秒前
个性惜蕊完成签到,获得积分10
50秒前
53秒前
轩辕书白完成签到,获得积分10
54秒前
qinzhikai完成签到,获得积分10
58秒前
天真的冬瓜完成签到,获得积分10
59秒前
小溜溜完成签到 ,获得积分10
1分钟前
普鲁卡因发布了新的文献求助10
1分钟前
tian发布了新的文献求助10
1分钟前
桃花源的瓶起子完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
YYLLTX完成签到,获得积分10
1分钟前
畅快山兰完成签到 ,获得积分10
1分钟前
gaoxiaogao完成签到,获得积分10
1分钟前
舒适怀寒完成签到 ,获得积分10
1分钟前
shenglll完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
普鲁卡因发布了新的文献求助10
1分钟前
Liang完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022