Moiré synaptic transistor for homogeneous-architecture reservoir computing

油藏计算 神经形态工程学 晶体管 计算机科学 人工神经网络 材料科学 光电子学 电压 人工智能 电气工程 循环神经网络 工程类
作者
Pengfei Wang,Moyu Chen,Yingchao Xie,Chen Pan,Kenji Watanabe,Takashi Taniguchi,Bin Cheng,Shi‐Jun Liang,Feng Miao
出处
期刊:Chinese Physics Letters [IOP Publishing]
卷期号:40 (11): 117201-117201
标识
DOI:10.1088/0256-307x/40/11/117201
摘要

Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information. Exploiting tunable and reproducible dynamics in the single electronic device have been desired to implement the “reservoir” and the “readout” layer of reservoir computing system. Two-dimensional moiré materials, with an artificial lattice constant many times larger than the atomic length scale, are one type of most studied artificial quantum materials in community of material science and condensed-matter physics over the past years. These materials are featured with gate-tunable periodic potential and electronic correlation, thus varying the electric field allows the electrons in the moiré potential per unit cell to exhibit distinct and reproducible dynamics, showing great promise in robust reservoir computing. Here, we report that a moiré synaptic transistor can be used to implement the reservoir computing system with a homogeneous reservoir-readout architecture. The synaptic transistor is fabricated based on an h-BN/bilayer graphene/h-BN moiré heterostructure, exhibiting ferroelectricity-like hysteretic gate voltage dependence of resistance. Varying the magnitude of the gate voltage enables the moiré transistor to switch between long-term memory and short-term memory with nonlinear dynamics. By employing the short- and long-term memories as the reservoir nodes and weights of the readout layer, respectively, we construct a full-moiré physical neural network and demonstrate that the classification accuracy of 90.8% can be achieved for the MNIST (Modified National Institute of Standards and Technology) handwritten digits database. Our work would pave the way towards the development of neuromorphic computing based on moiré materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷中青完成签到,获得积分10
刚刚
Lucas应助坚定的芷烟采纳,获得10
1秒前
hahahahaha完成签到,获得积分10
1秒前
1秒前
zddddd完成签到,获得积分10
2秒前
smile完成签到,获得积分10
2秒前
kdkddk完成签到,获得积分10
2秒前
科研通AI5应助自然毛巾采纳,获得10
2秒前
平淡南松完成签到,获得积分10
2秒前
3秒前
汉域人完成签到,获得积分10
4秒前
假面完成签到,获得积分10
4秒前
5秒前
littleJ完成签到,获得积分10
5秒前
dd36完成签到,获得积分10
5秒前
5秒前
5秒前
迅捷完成签到,获得积分10
5秒前
纵马长歌完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
WonderHua应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助冰淇淋采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
罗_应助科研通管家采纳,获得10
6秒前
cinix发布了新的文献求助30
9秒前
9秒前
成就绮琴完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
JamesPei应助小枣采纳,获得10
10秒前
子啼当归发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Modern nutrition in health and disease 10th ed 1000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550708
求助须知:如何正确求助?哪些是违规求助? 3126986
关于积分的说明 9371765
捐赠科研通 2826228
什么是DOI,文献DOI怎么找? 1553572
邀请新用户注册赠送积分活动 724990
科研通“疑难数据库(出版商)”最低求助积分说明 714494