Dual attention-based deep learning network for multi-class object semantic segmentation of tunnel point clouds

点云 计算机科学 分割 人工智能 规范化(社会学) 交叉熵 深度学习 编码器 交叉口(航空) 数据挖掘 模式识别(心理学) 工程类 人类学 操作系统 社会学 航空航天工程
作者
Ankang Ji,Limao Zhang,Hongqin Fan,Xiaolong Xue,Yudan Dou
出处
期刊:Automation in Construction [Elsevier]
卷期号:156: 105131-105131 被引量:3
标识
DOI:10.1016/j.autcon.2023.105131
摘要

Aiming to automatically segment multi-class objects on the tunnel point cloud, a deep learning network named dual attention-based point cloud network (DAPCNet) is developed in this paper to act on point clouds for segmentation. In the developed model, data normalization and feature aggregation are first processed to eliminate data discrepancies and enhance local features, after which the processed data are input into the built network layers based on the encoder-decoder architecture coupled with an improved 3D dual attention module to extract and learn features. Furthermore, a custom loss function called Facal Cross-Entropy ("FacalCE") is designed to enhance the model's ability to extract and learn features while addressing imbalanced data distribution. To validate the effectiveness and feasibility of the developed model, a dataset of tunnel point clouds collected from a real engineering project in China is employed. The experimental results indicate that (1) the developed model has excellent performance with Mean Intersection over Union (MIoU) of 0.8597, (2) the improved 3D dual attention module and "FacalCE" contribute to the model performance, respectively, and (3) the developed model is superior to other state-of-the-art methods, such as PointNet and DGCNN. In summary, the DAPCNet model exhibits exceptional performance, offering effective and accurate results for segmenting multi-class objects within tunnel point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
慕青应助wanzhitao采纳,获得10
4秒前
6秒前
Larvenpiz完成签到,获得积分10
6秒前
gh发布了新的文献求助10
7秒前
lyy发布了新的文献求助10
7秒前
8秒前
10秒前
xiaowang发布了新的文献求助10
11秒前
Yun发布了新的文献求助10
12秒前
Ava应助冷酷莫言采纳,获得10
12秒前
愉快若剑发布了新的文献求助10
13秒前
FRW完成签到,获得积分10
13秒前
劉劉完成签到 ,获得积分10
13秒前
勤奋灯泡发布了新的文献求助10
14秒前
14秒前
一枚研究僧应助帅气面包采纳,获得10
14秒前
jiangnan应助奕奕采纳,获得10
14秒前
15秒前
脑洞疼应助良景似尘采纳,获得10
16秒前
傻傻的香菱完成签到,获得积分10
17秒前
赘婿应助优秀醉易采纳,获得10
17秒前
FashionBoy应助FRW采纳,获得10
18秒前
18秒前
进击的研狗发布了新的文献求助200
19秒前
gh完成签到,获得积分10
19秒前
虚幻的璟完成签到,获得积分10
20秒前
桐桐应助清新的苑博采纳,获得10
20秒前
20秒前
可爱的函函应助田田田田采纳,获得10
21秒前
21秒前
隐形曼青应助勤奋灯泡采纳,获得10
22秒前
不回首发布了新的文献求助10
22秒前
研友_X894JZ完成签到 ,获得积分10
23秒前
VAE完成签到,获得积分10
24秒前
Ava应助swmyybh采纳,获得10
24秒前
chentl完成签到,获得积分10
24秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3251986
求助须知:如何正确求助?哪些是违规求助? 2894895
关于积分的说明 8283768
捐赠科研通 2563527
什么是DOI,文献DOI怎么找? 1391650
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628894