Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining

计算机科学 人工智能 互补性(分子生物学) 编码器 生成语法 生成对抗网络 数据挖掘 一致性(知识库) 图形 机器学习 深度学习 理论计算机科学 遗传学 生物 操作系统
作者
Xia-an Bi,YangJun Huang,Zicheng Yang,Ke Chen,Zhaoxu Xing,Luyun Xu,Xiang Li,Zhengliang Liu,Tianming Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 2252-2266 被引量:1
标识
DOI:10.1109/tpami.2023.3330795
摘要

Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科目三应助飞起又落下采纳,获得10
2秒前
赘婿应助myun608采纳,获得10
2秒前
善学以致用应助lebron采纳,获得10
3秒前
缓慢如南应助凉拌土豆芽采纳,获得10
3秒前
贰陆完成签到,获得积分10
4秒前
自然沛槐发布了新的文献求助10
4秒前
4秒前
tfq200发布了新的文献求助10
4秒前
4秒前
小蘑菇应助yiryir采纳,获得10
4秒前
微甜柠檬发布了新的文献求助10
5秒前
JamesPei应助月亮采纳,获得10
5秒前
5秒前
小齐完成签到,获得积分10
6秒前
LYY完成签到,获得积分10
6秒前
6秒前
小怪兽发布了新的文献求助10
6秒前
活力的以寒完成签到 ,获得积分10
6秒前
CipherSage应助jw采纳,获得10
7秒前
羊笨笨发布了新的文献求助10
7秒前
二鹏发布了新的文献求助50
7秒前
寒冷的小蚂蚁完成签到,获得积分10
8秒前
8秒前
Jasper应助tfq200采纳,获得10
8秒前
Akim应助自己采纳,获得10
9秒前
Akim应助雅风采纳,获得10
9秒前
9秒前
9秒前
liuhang发布了新的文献求助30
10秒前
智慧吗喽发布了新的文献求助10
10秒前
10秒前
孙新月发布了新的文献求助10
11秒前
11秒前
一战完成签到,获得积分10
11秒前
石幼蓉完成签到,获得积分20
11秒前
Hello应助嘚嘚采纳,获得10
11秒前
mk发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552909
求助须知:如何正确求助?哪些是违规求助? 3128985
关于积分的说明 9380117
捐赠科研通 2828106
什么是DOI,文献DOI怎么找? 1554841
邀请新用户注册赠送积分活动 725612
科研通“疑难数据库(出版商)”最低求助积分说明 715095