Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry

随机森林 化学 人工智能 质谱法 支持向量机 串联质谱法 四极飞行时间 卷积神经网络 多层感知器 细菌细胞结构 模式识别(心理学) 四极离子阱 细菌 色谱法 人工神经网络 计算机科学 离子阱 生物 遗传学
作者
L. Edwin Gonzalez,Dalton T. Snyder,Harman Casey,Yanyang Hu,Donna M. Wang,Megan Guetzloff,Nicole Huckaby,Eric T. Dziekonski,J. Mitchell Wells,R. Graham Cooks
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (46): 17082-17088 被引量:12
标识
DOI:10.1021/acs.analchem.3c04016
摘要

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
huhu发布了新的文献求助10
3秒前
11完成签到,获得积分10
3秒前
刘六完成签到,获得积分10
3秒前
琪琪发布了新的文献求助10
4秒前
satuo完成签到,获得积分10
4秒前
4秒前
xiexie完成签到,获得积分10
5秒前
SciGPT应助甜甜的小龙人采纳,获得10
5秒前
6秒前
6秒前
6秒前
YNYang完成签到,获得积分10
6秒前
phil完成签到,获得积分10
7秒前
月牙儿发布了新的文献求助10
7秒前
南桑发布了新的文献求助10
8秒前
satuo发布了新的文献求助10
8秒前
思源应助鉴湖采纳,获得10
8秒前
creed发布了新的文献求助10
8秒前
Owen应助风中秋寒采纳,获得10
8秒前
无言务实完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助150
9秒前
胡图图完成签到 ,获得积分10
9秒前
慕青应助xiang采纳,获得10
10秒前
桐桐应助1111111采纳,获得10
10秒前
zhuzhu完成签到,获得积分10
10秒前
科研通AI6应助迅速的访彤采纳,获得10
10秒前
爱吃榴莲的芒果完成签到,获得积分10
10秒前
10秒前
周生关注了科研通微信公众号
11秒前
11秒前
隐形曼青应助许安采纳,获得10
11秒前
gmace完成签到,获得积分10
12秒前
123456发布了新的文献求助10
12秒前
12秒前
13秒前
wj完成签到,获得积分10
14秒前
乐观忆灵完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123418
求助须知:如何正确求助?哪些是违规求助? 4327877
关于积分的说明 13485721
捐赠科研通 4162142
什么是DOI,文献DOI怎么找? 2281236
邀请新用户注册赠送积分活动 1282659
关于科研通互助平台的介绍 1221782