亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry

随机森林 化学 人工智能 质谱法 支持向量机 串联质谱法 四极飞行时间 卷积神经网络 多层感知器 细菌细胞结构 模式识别(心理学) 四极离子阱 细菌 色谱法 人工神经网络 计算机科学 离子阱 生物 遗传学
作者
L. Edwin Gonzalez,Dalton T. Snyder,Harman Casey,Yanyang Hu,Donna M. Wang,Megan Guetzloff,Nicole Huckaby,Eric T. Dziekonski,J. Mitchell Wells,R. Graham Cooks
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (46): 17082-17088 被引量:14
标识
DOI:10.1021/acs.analchem.3c04016
摘要

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
ceeray23应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
32秒前
拿起蜡笔小新完成签到 ,获得积分10
36秒前
50秒前
53秒前
57秒前
lazysheep关注了科研通微信公众号
57秒前
59秒前
1分钟前
1分钟前
闪闪的梦柏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助gbb采纳,获得10
1分钟前
1分钟前
树洞里的刺猬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Cherish发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
执着的怜寒完成签到 ,获得积分10
2分钟前
情怀应助东京今夜下雪采纳,获得10
2分钟前
2分钟前
ANG完成签到 ,获得积分10
2分钟前
2分钟前
直率三问完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
jim完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782232
关于积分的说明 15052807
捐赠科研通 4809729
什么是DOI,文献DOI怎么找? 2572530
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487549