Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry

随机森林 化学 人工智能 质谱法 支持向量机 串联质谱法 四极飞行时间 卷积神经网络 多层感知器 细菌细胞结构 模式识别(心理学) 四极离子阱 细菌 色谱法 人工神经网络 计算机科学 离子阱 生物 遗传学
作者
L. Edwin Gonzalez,Dalton T. Snyder,Harman Casey,Yanyang Hu,Donna M. Wang,Megan Guetzloff,Nicole Huckaby,Eric T. Dziekonski,J. Mitchell Wells,R. Graham Cooks
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (46): 17082-17088 被引量:12
标识
DOI:10.1021/acs.analchem.3c04016
摘要

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JW发布了新的文献求助10
刚刚
刚刚
Felicity完成签到,获得积分20
刚刚
枫树狐狸发布了新的文献求助10
刚刚
liangzhao发布了新的文献求助30
刚刚
Jelinna完成签到,获得积分10
1秒前
1秒前
顺心的大侠完成签到,获得积分10
1秒前
Ava应助hhwoyebudong采纳,获得10
1秒前
斯文败类应助健忘的妙松采纳,获得30
2秒前
郭生发布了新的文献求助10
3秒前
keyanlv发布了新的文献求助10
3秒前
lilili发布了新的文献求助10
3秒前
NexusExplorer应助wrrop采纳,获得10
3秒前
Zx_1993应助Innocent_Story采纳,获得10
3秒前
哎哟发布了新的文献求助10
3秒前
weiliu发布了新的文献求助10
4秒前
ZWY完成签到,获得积分10
4秒前
wanci应助猪猪hero采纳,获得10
4秒前
27小天使应助林子采纳,获得30
4秒前
宓天问完成签到,获得积分10
4秒前
5秒前
顺心稚晴完成签到 ,获得积分10
5秒前
David发布了新的文献求助10
5秒前
zzz完成签到,获得积分10
5秒前
喜欢朝雪发布了新的文献求助10
6秒前
6秒前
hometown完成签到,获得积分10
7秒前
张晨完成签到 ,获得积分10
7秒前
orixero应助踏实映天采纳,获得10
7秒前
7秒前
liangzhao完成签到,获得积分10
7秒前
wzyshzu完成签到,获得积分10
7秒前
8秒前
自由念露完成签到 ,获得积分10
8秒前
8秒前
小乐儿~完成签到,获得积分10
9秒前
香蕉觅云应助ZWY采纳,获得10
9秒前
李健的小迷弟应助22采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710