Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry

随机森林 化学 人工智能 质谱法 支持向量机 串联质谱法 四极飞行时间 卷积神经网络 多层感知器 细菌细胞结构 模式识别(心理学) 四极离子阱 细菌 色谱法 人工神经网络 计算机科学 离子阱 生物 遗传学
作者
L. Edwin Gonzalez,Dalton T. Snyder,Harman Casey,Yanyang Hu,Donna M. Wang,Megan Guetzloff,Nicole Huckaby,Eric T. Dziekonski,J. Mitchell Wells,R. Graham Cooks
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (46): 17082-17088 被引量:5
标识
DOI:10.1021/acs.analchem.3c04016
摘要

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助虎子采纳,获得10
刚刚
爆米花应助yuanhao采纳,获得10
1秒前
1秒前
斯文幻儿发布了新的文献求助10
1秒前
2秒前
终澈完成签到,获得积分10
2秒前
Junping发布了新的文献求助10
2秒前
橘生淮南发布了新的文献求助10
3秒前
3秒前
4秒前
清宁亦无拘完成签到 ,获得积分10
4秒前
张行发布了新的文献求助10
4秒前
852应助踏雪无痕采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
WO完成签到,获得积分20
7秒前
李健的小迷弟应助Dr.coco采纳,获得10
8秒前
wnx001111发布了新的文献求助10
8秒前
脑洞疼应助nqyKOj采纳,获得20
8秒前
隐形曼青应助千秋入画采纳,获得10
8秒前
稳重诗珊完成签到,获得积分10
8秒前
8秒前
星辰大海应助哈士轩采纳,获得10
8秒前
st完成签到,获得积分10
8秒前
9秒前
jianlong0206完成签到,获得积分10
9秒前
wanci应助xxx采纳,获得10
9秒前
9秒前
果冻信号发布了新的文献求助10
9秒前
hdbys发布了新的文献求助10
9秒前
我爱吃糯米团子完成签到,获得积分10
9秒前
一瓶水发布了新的文献求助10
10秒前
SYLH应助橙子采纳,获得30
10秒前
ZZDXXX发布了新的文献求助30
11秒前
11秒前
糕糕发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635