Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry

随机森林 化学 人工智能 质谱法 支持向量机 串联质谱法 四极飞行时间 卷积神经网络 多层感知器 细菌细胞结构 模式识别(心理学) 四极离子阱 细菌 色谱法 人工神经网络 计算机科学 离子阱 生物 遗传学
作者
L. Edwin Gonzalez,Dalton T. Snyder,Harman Casey,Yanyang Hu,Donna M. Wang,Megan Guetzloff,Nicole Huckaby,Eric T. Dziekonski,J. Mitchell Wells,R. Graham Cooks
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (46): 17082-17088 被引量:12
标识
DOI:10.1021/acs.analchem.3c04016
摘要

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小骄傲完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
小刚大王给小刚大王的求助进行了留言
3秒前
搜集达人应助chai采纳,获得10
4秒前
吃元宵完成签到,获得积分10
4秒前
5秒前
一只滦完成签到,获得积分10
6秒前
丫丫发布了新的文献求助30
7秒前
风清扬应助开心的雁芙采纳,获得10
8秒前
8秒前
Criminology34应助to高坚果采纳,获得10
9秒前
哈哈哈哈发布了新的文献求助10
10秒前
灵巧的鲂发布了新的文献求助10
10秒前
DJsky123完成签到,获得积分10
10秒前
憨八完成签到,获得积分10
10秒前
Daria完成签到,获得积分10
11秒前
zsy发布了新的文献求助10
13秒前
寒冷南晴完成签到,获得积分10
13秒前
13秒前
山雀完成签到,获得积分10
17秒前
18秒前
liangyiteng完成签到 ,获得积分10
18秒前
灵巧的鲂完成签到,获得积分20
18秒前
学习完成签到 ,获得积分10
21秒前
搜集达人应助三哼采纳,获得10
22秒前
科研通AI2S应助huhdcid采纳,获得10
23秒前
23秒前
徐甲淇完成签到,获得积分10
23秒前
24秒前
ding应助minrui采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284315
求助须知:如何正确求助?哪些是违规求助? 4437842
关于积分的说明 13815150
捐赠科研通 4318810
什么是DOI,文献DOI怎么找? 2370658
邀请新用户注册赠送积分活动 1366010
关于科研通互助平台的介绍 1329507