荷电状态
等效电路
相关向量机
锂离子电池
在线模型
算法
电池(电)
计算机科学
卡尔曼滤波器
稳健性(进化)
扩展卡尔曼滤波器
控制理论(社会学)
支持向量机
工程类
人工智能
电压
数学
电气工程
功率(物理)
统计
物理
生物化学
化学
控制(管理)
量子力学
基因
作者
Ling Mao,Qinyong Hu,Jinbin Zhao,Xiaofang Yu
出处
期刊:Measurement
[Elsevier]
日期:2023-11-01
卷期号:221: 113487-113487
标识
DOI:10.1016/j.measurement.2023.113487
摘要
Ambient temperature significantly impacts battery characteristics and state-of-charge (SOC) accuracy, so it is crucial to estimate SOC under various temperatures. Most circuit models of lithium-ion batteries have poor temperature adaptability, especially at low temperatures. To solve this challenge, this paper proposes a fusion model of the Equivalent Circuit Model-Relevance Vector Machine to enhance SOC estimation under various temperatures. First, a second-order equivalent circuit model based on the forgetting factor recursive least squares is built to obtain the SOC value. Second, build a data-driven battery model based on the relevance vector machine (RVM) algorithm with a moving window method, and the SOC value is obtained based on the RVM model and the unscented Kalman filter algorithm. The weights of the models are merged using the Bayesian principle. The experiments verify that the fusion model accurately estimates SOC for different types of batteries under variable ambient temperature environments and exhibits strong robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI