Window Transformer Convolutional Autoencoder for Hyperspectral Sparse Unmixing

高光谱成像 计算机科学 模式识别(心理学) 卷积神经网络 人工智能 自编码 特征提取 编码器 核(代数) 卷积码 像素 深度学习 算法 解码方法 数学 组合数学 操作系统
作者
Fanqiang Kong,Yuhan Zheng,Dan Li,Yunsong Li,Mengyue Chen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3308206
摘要

The availability of spectral library makes hyperspectral sparse unmixing an attractive unmixing scheme, and the powerful feature extraction capability of deep learning meets the requirements of estimating abundances with hundreds of channels in sparse unmixing. However, few related researches have been carried out. In this letter, we propose a window transformer convolutional autoencoder (WiTCAE) to address the sparse unmixing problem. In our method, a well-designed transformer encoder for hyperspectral images is applied before convolutional neural network (CNN), aiming at exploring non-local information by a new attention mechanism called window-based pixel-level multihead self-attention (WP-MSA). Three consecutive CNN blocks focus on further joint spatial-spectral feature extraction, and adjust the number of channels to the number of endmembers contained in the spectral library. Moreover, CNN establishes the connections among windows, and smooths out the discontinuities caused by window partition. The decoder is a convolutional layer with the kernel size of 1, and its weights are fixed to a known spectral library. Comparative experiments on both simulated and real datasets confirm the superiority of our proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白雍完成签到,获得积分10
1秒前
maomao完成签到,获得积分10
1秒前
我是笨蛋完成签到 ,获得积分10
3秒前
酷波er应助caoyy采纳,获得10
4秒前
4秒前
Dreamsli发布了新的文献求助10
5秒前
有只小狗完成签到,获得积分10
6秒前
飞飞完成签到,获得积分10
7秒前
豆dou发布了新的文献求助10
7秒前
Mannone完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
13679165979完成签到,获得积分10
8秒前
Jocelyn7关注了科研通微信公众号
9秒前
Jzhang应助赵小可可可可采纳,获得10
9秒前
wls完成签到 ,获得积分10
10秒前
CC完成签到,获得积分10
10秒前
11秒前
鬼才之眼完成签到 ,获得积分10
11秒前
xfxx发布了新的文献求助10
12秒前
章家炜完成签到,获得积分20
12秒前
12秒前
茶博士发布了新的文献求助10
12秒前
专通下水道完成签到 ,获得积分10
17秒前
17秒前
17秒前
nenoaowu发布了新的文献求助30
17秒前
小马甲应助章家炜采纳,获得10
19秒前
赵李艺完成签到 ,获得积分10
19秒前
完美世界应助高大黄蜂采纳,获得10
20秒前
21秒前
21秒前
21秒前
zhangzhen发布了新的文献求助10
22秒前
马桶盖盖子完成签到 ,获得积分10
22秒前
23秒前
学术小白完成签到,获得积分10
23秒前
23秒前
郭豪琪发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824