MultiIB‐TransUNet: Transformer with multiple information bottleneck blocks for CT and ultrasound image segmentation

计算机科学 分割 过度拟合 人工智能 图像分割 变压器 模式识别(心理学) 电压 人工神经网络 工程类 电气工程
作者
Guangju Li,Dehu Jin,Qi Yu,Yuanjie Zheng,Meng Qi
出处
期刊:Medical Physics [Wiley]
卷期号:51 (2): 1178-1189 被引量:9
标识
DOI:10.1002/mp.16662
摘要

Abstract Background Accurate medical image segmentation is crucial for disease diagnosis and surgical planning. Transformer networks offer a promising alternative for medical image segmentation as they can learn global features through self‐attention mechanisms. To further enhance performance, many researchers have incorporated more Transformer layers into their models. However, this approach often results in the model parameters increasing significantly, causing a potential rise in complexity. Moreover, the datasets of medical image segmentation usually have fewer samples, which leads to the risk of overfitting of the model. Purpose This paper aims to design a medical image segmentation model that has fewer parameters and can effectively alleviate overfitting. Methods We design a MultiIB‐Transformer structure consisting of a single Transformer layer and multiple information bottleneck (IB) blocks. The Transformer layer is used to capture long‐distance spatial relationships to extract global feature information. The IB block is used to compress noise and improve model robustness. The advantage of this structure is that it only needs one Transformer layer to achieve the state‐of‐the‐art (SOTA) performance, significantly reducing the number of model parameters. In addition, we designed a new skip connection structure. It only needs two 1× 1 convolutions, the high‐resolution feature map can effectively have both semantic and spatial information, thereby alleviating the semantic gap. Results The proposed model is on the Breast UltraSound Images (BUSI) dataset, and the IoU and F1 evaluation indicators are 67.75 and 87.78. On the Synapse multi‐organ segmentation dataset, the Param, Hausdorff Distance (HD) and Dice Similarity Cofficient (DSC) evaluation indicators are 22.30, 20.04 and 81.83. Conclusions Our proposed model (MultiIB‐TransUNet) achieved superior results with fewer parameters compared to other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鹿发布了新的文献求助10
刚刚
刚刚
顽强的小刘应助霸气凡白采纳,获得10
2秒前
大模型应助芝麻采纳,获得10
2秒前
lidebing发布了新的文献求助10
3秒前
nozero应助wen采纳,获得30
3秒前
薄荷778完成签到,获得积分10
3秒前
3秒前
ds完成签到,获得积分20
3秒前
美丽凌柏发布了新的文献求助10
4秒前
PanCiro发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
方舟花完成签到,获得积分10
5秒前
成绩好发布了新的文献求助10
5秒前
6秒前
科研通AI5应助单身的凡雁采纳,获得10
6秒前
7秒前
zzg完成签到,获得积分10
7秒前
lidebing完成签到,获得积分10
8秒前
科研通AI5应助yyllyy采纳,获得10
10秒前
10秒前
10秒前
林一完成签到,获得积分10
10秒前
在水一方应助PanCiro采纳,获得10
11秒前
LL发布了新的文献求助100
11秒前
糊涂的雁易应助好好采纳,获得10
11秒前
12秒前
dd完成签到,获得积分10
12秒前
多情的续完成签到 ,获得积分10
13秒前
芝麻完成签到,获得积分10
13秒前
冷酷的蘑菇完成签到,获得积分10
13秒前
疯狂的蛋挞完成签到,获得积分10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高挑的梦芝完成签到,获得积分10
14秒前
15秒前
AHAO发布了新的文献求助10
15秒前
Owen应助小田采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667657
求助须知:如何正确求助?哪些是违规求助? 3226188
关于积分的说明 9768281
捐赠科研通 2936167
什么是DOI,文献DOI怎么找? 1608152
邀请新用户注册赠送积分活动 759520
科研通“疑难数据库(出版商)”最低求助积分说明 735404