生物相容性
药物输送
材料科学
癌症研究
化学
纳米技术
医学
有机化学
作者
Mengsi Zhang,Hao Jin,Yi Liu,Lanlan Wan,Shuwei Liu,Hao Zhang
标识
DOI:10.1016/j.actbio.2023.07.055
摘要
NO gas therapy is a supplementary approach for tumor treatment due to the advantages of minimal invasion, little drug resistance, low side effect and amplified efficacy. l-Arginine (L-Arg), a natural NO source with good biocompatibility, can release NO under the stimulation of H2O2 in tumor microenvironment. However, the conventional l-Arg delivery systems via noncovalent loading usually lead to inevitable premature leakage of nano-cargos during blood circulation. In this work, an efficient l-Arg self-delivery supramolecular nanodrug (SDSND) for tumor treatment is demonstrated by combining Mannich reaction and π-π stacking. l-Arg links to (-)-epigallocatechin gallate (EGCG) with the assistance of formaldehyde through Mannich reaction, and then assembles into nanometer-sized particles via π-π stacking. The guanidine group of l-Arg and the phenolic hydroxyl groups of EGCG are preserved in the SDSNDs, which allows for accomplishing gas therapy by provoking tumor cell apoptosis and combining with EGCG to amplify apoptosis, respectively. In addition, the SDSNDs exhibit high biocompatibility and avoid the premature leakage of l-Arg in blood circulation, providing an alternative l-Arg delivery system for NO gas therapy. STATEMENT OF SIGNIFICANCE: NO gas therapy has attracted emerging interest in tumor treatment. However, the controlled NO release and the avoidance of premature leakage of NO donors remain challenging. In this work, L-Arginine (L-Arg) self-delivery supramolecular nanodrug for efficient tumor therapy is demonstrated through the Mannich reaction of L-Arg, (-)-epigallocatechin gallate (EGCG) and formaldehyde. Stimulated by tumor microenvironment, the guanidine groups of L-Arg allow for accomplishing NO release and thus provoking tumor cell apoptosis. The nanodrug also avoids the premature leakage of L-Arg in blood circulation. Moreover, the preserved phenolic hydroxyl groups of EGCG combine with L-Arg to amplify apoptosis. The nanodrug exhibits high biocompatibility and good therapeutic effect, providing an alternative L-Arg delivery system for NO gas therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI