Interactive Feedback Loop with Counterfactual Data Modification for Serendipity in a Recommendation System

偶然性 推荐系统 计算机科学 个性化 反事实思维 偏爱 人在回路中 晋升(国际象棋) 协同过滤 万维网 知识管理 人工智能 心理学 社会心理学 哲学 认识论 政治 政治学 法学 经济 微观经济学
作者
Gyewon Jeon,Sangyeon Kim,Sangwon Lee
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-17 被引量:2
标识
DOI:10.1080/10447318.2023.2238369
摘要

AbstractUsers often encounter tedious recommendations as they are continuously exposed to the recommendation system. In response to this issue, serendipity in a recommendation system has been introduced to generate novel and unexpected recommendations while keeping them relevant to users' previous preferences. This study proposes an interactive feedback loop for a serendipity in a recommendation system that allows users to directly explore content via counterfactual manipulation of features. Specifically, users indicate their preferences through the "what-if" based customization of content meta-information, and these modifications influence their usage history, thereby enabling the elicitation of serendipitous items. To validate the proposed feedback loop, we conducted a scenario-based experiment and compared system-initiated and user-intervened recommendations. The results reveal that counterfactual exploration can help to generate serendipitous recommendations. This study contributes to providing a user-friendly recommendation system that can retrieve preference-reflected recommendations through user interaction.Keywords: Recommendation systemserendipityinteractive machine learningcounterfactual data modificationhuman intervention Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00078, Explainable Logical Reasoning for Medical Knowledge Generation).Notes on contributorsGyewon JeonGyewon Jeon is a graduate student in Department of Industrial and Management Engineering at Korea University. His academic interests lie in Serendipitous Recommender System, Interactive Machine Learning, and Human Artificial Intelligence Interaction.Sangyeon KimSangyeon Kim is a visiting scholar in North Carolina State University. He has obtained his PhD degree from Sungkyunkwan University in 2022. His academic interests lie in HCI, Intelligent user interface, and accessible computing.Sangwon LeeSangwon Lee is a Professor in School of Industrial and Management Engineering at Korea University. He has obtained his PhD and Master degrees from the Pennsylvania State University in 2010 and 2006, respectively. Also, he has graduated as B.S. from Korea University in 2004. His academic interests lie in HCI, UX, XAI, and affective computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摇槐米发布了新的文献求助10
刚刚
李小新完成签到 ,获得积分10
1秒前
今后应助秋刀鱼不过期采纳,获得10
2秒前
3秒前
暴躁的问兰完成签到 ,获得积分10
3秒前
今天睡够觉完成签到,获得积分20
3秒前
在水一方应助唐帅采纳,获得10
4秒前
4秒前
在水一方应助eternal采纳,获得10
5秒前
李健的小迷弟应助Sicily采纳,获得10
5秒前
FashionBoy应助Menand采纳,获得10
6秒前
zxxx完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
9秒前
kkx完成签到,获得积分10
10秒前
12秒前
难过飞瑶发布了新的文献求助30
12秒前
13秒前
爆米花应助殷勤的采文采纳,获得10
14秒前
15秒前
15秒前
树在西元前完成签到,获得积分10
15秒前
Essie发布了新的文献求助10
16秒前
明亮的宁发布了新的文献求助10
16秒前
kyrry完成签到,获得积分10
17秒前
唐帅发布了新的文献求助10
19秒前
xjcy应助天真过客采纳,获得10
19秒前
wangayting发布了新的文献求助10
20秒前
20秒前
欧阳完成签到,获得积分20
22秒前
23秒前
杨雪妮发布了新的文献求助10
25秒前
Lucas应助迪琛采纳,获得10
27秒前
27秒前
个性的汲发布了新的文献求助10
27秒前
28秒前
kilig完成签到,获得积分10
30秒前
Nitric_Oxide完成签到,获得积分10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046